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ABSTRACT

A portfolio’s compound return over time is not simply the
weighted sum of the compound returns of its underlying stocks.
Instead, it is due to (a) the underlying constituent stocks’ com-
pound returns, and (b) a component induced by constituent
covariances. This can be important. The average smallest-cap
decile portfolio outperformed its largest-cap counterpart by 44
basis points per month (bps/mo), but the smallest-cap decile
stock constituents on average underperformed their largest-cap
counterparts by 74 bps/mo. Thus, the “size effect" is not a
small-firm effect, but a small-firm portfolio effect. In contrast,
our high-minus-low (HML) and up-minus-down (UMD) portfo-
lios outperformed because their individual stock constituents
outperformed on average. Value and momentum are simulta-
neously portfolio and individual stock effects.
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It is tempting to assume that the performance of a portfolio is equivalent
to the performance of its underlying stocks. Unfortunately, this assumption
can lead to incorrect inferences regarding the portfolio’s constituents and
can obscure richer observations about a portfolio’s performance and that of
its underlying stocks. This paper focuses on two distinct sources of portfolio
performance. The first source arises from the familiar first moment of the
portfolio’s underlying stocks’ returns.! The second source, though not
a second order effect, arises from the variances and covariances of the
portfolio’s underlying stocks. We empirically estimate these sources based
on the Fernholz and Shay (1982) mathematical model of portfolio returns.

The following simple example illustrates the underlying economic issue
that is the focus of this paper. Suppose there are four stocks with returns
over two periods as presented in Table 1. First, consider stocks A; and
A,. Each stock doubles in value one period and loses half its value in the
other period. Both stocks will have a 25% average raw return over the two
periods, but an average log return of zero. Even though the average log
return is zero for each stock, an equal-weighted portfolio (EW,) of the two
stocks earns a 22.31% log return per period.

Now consider stocks B; and B,, which both have raw returns of 25%
(log returns of 22.31%) each period. An equal-weighted portfolio (EWg)
of these two stocks will have an arithmetic return of 25% (log return of
22.31%) per period. Thus, portfolio EWy performs identically to portfolio
EW,, but the sources of the returns are strikingly different. In portfolio
EW, the return is driven by the variance of the underlying stocks. However,
the return of portfolio EWj is a direct result of the log returns of the two
stocks. We provide a method for parsing portfolio returns into these two
distinct sources.

Our analysis primarily concerns the cross-sectional aggregation of indi-
vidual stock returns to portfolio returns. This concept is reflected in Table 1
by the fact that a portfolio’s log return does not necessarily equal the av-
erage log return of its constituent stocks. In the case EW,, the average

!We adopt the same terminology as Campbell et al. (1998) when referring to returns.
Unless otherwise indicated, “return” refers to the continuously compounded return on a
stock or portfolio. This may be presented as the continuous return, log return, geometric
return, compound return, or growth rate in other contexts and captures the average
growth rate of a stock or portfolio over multiple time periods. In an effort to be clear, we
sometimes emphasize the distinction from simple (i.e., raw or arithmetic) returns with
explicit references to compound returns and raw returns.



A Note on the Sources of Portfolio Returns 119

Raw Returns Log Returns

Period 1 Period 2 Average Variance Period 1 Period 2 Average Variance

A +100% —50%  +25% 0.5625 +0.6931 —0.6931 0.0000 0.4805
A, —50% +100% +25% 0.5625 —0.6931 +0.6931 0.0000 0.4805

EW, +25% +25% +25% 0.0000 +0.2231 +0.2231 +0.2231 0.0000
B,  +425%  +25% +25% 0.0000  +0.2231 +0.2231 +0.2231 0.0000
B,  +25%  +25% +25% 0.0000  +0.2231 +0.2231 +0.2231 0.0000
EW, +25% +25% +25% 0.0000 +0.2231 +0.2231 +0.2231 0.0000

Table 1: Examples of the Sources of Returns for Stocks and Portfolios.

log return for the portfolio is 22.31%, while the average log return of its
constituent stocks is zero. This phenomenon is distinct from the more
widely recognized fact that average log returns for an individual stock over
time do not simply equal the log of the average raw returns for that stock
over time. For example, the average log return for stock A; is zero, but the
log of the average raw return of 25% is 22.31% for A;.

Fernholz and Shay (1982), hereafter FS, offer what we believe to be the
first rigorous mathematical analysis to identify the sources of the long-term
performance of a portfolio. Specifically, FS show that a portfolio that is
rebalanced to the same constant weights has a compound return that is a
function of the underlying stocks’ compound returns and an “excess growth
rate” that is due to the difference between the stocks’ variances and the
(diversified) portfolio’s variance.? This dichotomy implies that a portfolio’s
return can be increased by 1) choosing stocks that have higher returns than
their peers; and/or 2) choosing a more favorable mix of stocks based on
their variances and covariances. The former component arises from dif-
ferences among stocks’ cross-sectional returns, while the latter component
arises from differences among stocks’ volatilities and covariances.

2Brennan and Schwartz (1985) independently offer a similar derivation of what they
term a positive “bias” in the return of an equal-weighted portfolio (a special case of the
FS analysis) over and above the return of an equal-weighted geometric index. Booth and
Fama (1992) separately derive a similar decomposition of a portfolio’s return and attribute
a “diversification return” to an asset’s contribution to the portfolio return that is in excess
of the asset’s compound return. Booth and Fama (1992) provide some analysis at the asset
allocation level across indexes, but do not examine the potential effects that occur within
portfolios across stocks.
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We illustrate the importance of the FS model by empirically estimating
the sources of portfolios’ returns for several characteristic-based portfolios
that appear frequently in the literature. Our results reveal that a portfolio of
stocks from the smallest market cap decile have average monthly compound
returns of 44 bps per month more than a large stock portfolio, but the
average compound returns of stocks in the small-cap portfolio are 74 bps
lower than the returns of stocks in the large-cap portfolio. The difference of
about 118 bps between these two estimates derives from the excess growth
rate that is induced by the higher variance of stocks in the small-cap port-
folio. When sorted by book-to-market ratios, the highest book-to-market
portfolio has portfolio monthly compound returns that are 127 bps higher
than the lowest book-to-market portfolio. In contrast to size portfolios, the
difference in portfolio compound returns is driven primarily by the differ-
ence in the average underlying stock compound returns for book-to-market
portfolios, as the highest book-to-market portfolio’s stocks have an average
compound return that is 157 bps higher than the average compound return
for the stocks in the lowest book-to-market portfolio. Portfolios based on
past returns and estimates of beta display both weaker and more non-
linear patterns across decile portfolios, yet they also exhibit meaningful
differences between portfolio returns and underlying average stock returns.

Our parsing reveals interesting new insights into the sources of portfolio
returns in general, and the sources of returns to oft-studied characteristic-
based portfolios, such as size (Banz (1981)), market-to-book (Fama and
French (1992)), and momentum (Carhart (1997)) portfolios, in particular.
For example, the outperformance of small firm portfolios can be attributed
to the influence of the constituent stocks’ variances on the portfolio’s re-
turn, not to the returns of the underlying stocks themselves. Our key
results illustrate this with the seemingly paradoxical result that portfolios
of small stocks outperform, while small stocks underperform, on average.
The apparent paradox of having outperforming portfolios comprised of
underperforming stocks is easily resolved in the mathematical parsing of
portfolio returns that we present herein.

1 Background

Numerous academic studies have demonstrated how cross-sectional vari-
ation in the characteristics of stocks is related to portfolio performance
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over time Brown and Warner (1980), Barber and Lyon (1997), Kothari
and Warner (1997), Lyon et al. (1999), Boynton and Oppenheimer (2006),
and Albuquerque (2012). However, this generalization from individual
stocks to portfolios and vice versa is subject to inherent limitations as the
time-series patterns of individual stock returns do not directly aggregate to
portfolio return patterns. We therefore approach the issue from the oppo-
site direction. By imposing precise and consistent measurement methods
on stock and portfolio returns by using continuously compounded (i.e., log)
returns and fixed rebalancing frequencies, we are able to parse portfolio
returns into the underlying contributions made by the constituent stocks.
This allows us to undertake an analysis of the cross-sectional characteristics
of individual stocks and their contribution to a portfolio’s return that was
not utilized in past studies.

Firm size is a good example of a cross-sectional stock-level character-
istic that can be used to show how economic explanations can be greatly
refined through our decomposition of portfolio returns. Discussions of
the size effect typically fall into two categories: 1) portfolio comparisons:
“Portfolios of small firms outperform portfolios of large firms”; and 2)
stock comparisons: “Small firms earn higher returns than large firms.” For
example, Bodie et al. (2011) fall into the former case, noting that “Aver-
age annual returns between 1926 and 2006 are consistently higher on
small-firm portfolios” (p. 361). However, others often provide the latter
explanation. For example, Reilly and Brown (2006) note in reference to
studies of the size effect, “During most periods they found the negative
relationship between size and return; but, during others (such as 1967 to
1975), they found that large firms outperformed the small firms” (p. 180).
Similarly, Sharpe (2008) notes “small stocks seem to have performed better
than large stocks”; and Malkiel (1999) describes the size effect as, “the
tendency over long periods of time for small stocks to do better than large
stocks” (p. 250). An often-overlooked problem here is that, with compound
returns, one category does not imply the other. Indeed, it is possible to
have a portfolio of stocks that outperform over the long term, even though
the underlying stocks are below-average performers.

To decompose a portfolio’s return, we begin with the returns of the
portfolio’s underlying assets. Let y; (h) be the compound return (i.e.,
continuously compounded or log return) for stock i at time t over a holding
period of length h. If y; ,(h) is normally distributed (i.e., raw stock returns
are log-normally distributed) with mean ¥;(h ) and variance crl.z( h), then
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the average compound return and the average holding period return, 7;(h ),
are related to one another as®
o?(h)

ri(h)~7(h)+ 5 €3]

If stock holding period returns are not log-normal then it is an empirical
question whether (1) is a useful approximation. If stock returns are log-
normally distributed, then portfolio returns are not log-normally distributed.
Similarly, if portfolio returns are log-normally distributed, the average
holding period return of portfolio p can be expressed analogously as for
individual stocks:

i i o2(h)
p(h) 7, (h) + . 2)

Using the definition of the arithmetic average return on a portfolio and
Eq. (1), the arithmetic average return on a portfolio that maintains a
constant weight in each stock is

N
Fp(h) = X, wi-Fi(h)
1;1 (3)
= w7 (R + 23N wio?(h),
i=1

where w; is the portfolio weight in stock i. Note that this portfolio is implic-
itly rebalanced every holding period h to maintain the constant weights.
Combining (3) and (1), the average compound return on a portfolio is

) N ) 1 N
rp(h)=i=21wi-n(h)+5-{;%-0?(}1)—0;@]. )

Using continuous rebalancing, Fernholz and Shay (1982) derive a contin-
uous-time version of (4) and identify the second term as a portfolio’s excess
growth rate. We denote the discrete time portfolio excess growth rate as

N
ra(h) = %-[lei~o?(h)—a§(h)]. (5)

3The exact relationship is In[1 + 7,(h)] = 7;(h) + crl.z( h)/2. We use the approximation
formula for ease of exposition and illustration, ignoring the approximation beyond Eq. (3)
and assuming it holds exactly. The empirical validity of this assumption and approximation
are confirmed by the results herein.
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The purpose in identifying the holding period length h in the discrete
time version is to emphasize the importance of matching the measurement
interval of the variances and covariances with the frequency of rebalancing
to the constant weights. For example, when using monthly returns to
estimate Eq. (4), monthly rebalancing is implied.

Equation (4) shows that a portfolio’s compound return comes from
two primary sources: 1) the weighted average compound returns of the
constituent stocks; and 2) the portfolio’s excess growth rate. Not surpris-
ingly, weighting stocks with high returns benefits a portfolio’s return. Less
obvious is the impact to a portfolio’s return that arises from the excess
growth rate. Specifically, any portfolio that heavily weights stocks with
relatively high variances should benefit, assuming that the stocks are not
perfectly correlated so that the portfolio’s variance is not increased pro-
portionally.* Potential candidates for portfolios that put relatively high
weight on high-variance stocks are equal-weighted portfolios, contrarian
portfolios, or small stock portfolios. To the extent that the stocks in these
portfolios have higher variances, they should have higher excess growth
rates.

Equation (4) is useful beyond its implications for portfolio analysis.
Specifically, many studies utilize, either explicitly or implicitly, constant-
weight portfolios in their analysis. Indeed, any study employing panel data
that averages the returns across stocks and then considers the average of
this measure over time is subject to these effects that act on a portfolio’s
return. The return of Portfolio A could exceed the return of Portfolio B
if: (1) the stocks in Portfolio A have higher returns than the stocks in
portfolio B; or (2) the excess growth rate of Portfolio A exceeds that of
Portfolio B; or both. It would be inadvisable to infer from a higher return
of Portfolio A compared to Portfolio B that the stocks in Portfolio A have
higher returns compared to stocks in Portfolio B just by considering the
portfolios’ returns. Equation (4) allows researchers to parse the effects and
distinguish between an interpretation that implies something about the
underlying firms and another interpretation that implies something only
about portfolios of such firms. In some circumstances, this subtlety might

*Booth and Fama (1992) derive an analogous expression for a portfolio’s average log
return from the Taylor series expansion of the natural logarithm, referring to the excess
growth effect as the “diversification return.” Their analysis focuses on the diversification
return to various asset-class-level indexes and does not consider the effect within the
indexes and asset classes that they consider.
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be considered negligible semantics, while in other circumstances it might
be critical to the interpretation and implications of the study.

2 The Excess Growth Rates of Factor-based Portfolios

Fama and French (1992) (hereafter, FF), among others, show a “size” effect
in which portfolios of small (low market equity (ME)) stocks have higher
average returns compared to portfolios of large (high ME) stocks, as well
as a book-to-market effect where portfolios of high book-to-market (high
BE/ME) stocks have higher average returns compared to portfolios of low
book-to-market (low BE/ME) stocks. Carhart (1997) incorporates the
momentum effect of Jegadeesh and Titman (1993) into FF’s model and
shows that past performance can explain cross-sectional differences in
the portfolios of mutual funds. While the momentum effect implies that
current performance is positively related to (short-term) past performance,
earlier work by De Bondt and Thaler (1987) suggests an opposite pattern
of “reversals” over longer horizons.

The analysis below shows that the size and reversal effects are driven
by the relative excess growth rates of portfolios sorted by size or long-term
past performance. In contrast, the book-to-market and short-term mo-
mentum effects are actual characteristics of the underlying stock returns.
Specifically, small stock and long-term reversal portfolios have higher re-
turns because small stocks and stocks that have performed poorly over the
previous 3-5 year period have higher variances, on average, leading to
higher excess growth rates for portfolios composed of these stocks. These
portfolios have higher returns despite the fact that small and contrarian
stocks have lower compound returns, on average. In other words, these
stocks do not outperform on average, but portfolios composed of them
do. In contrast, high book-to-market portfolios and short-term momentum
portfolios outperform because the constituent stocks have higher average
compound returns.

For the sample period of January 1960 through December 2012, we
match monthly raw return and capitalization (ME) data for non-financial
common stocks from the Center for Research in Security Prices (CRSP) with
book value of equity (BE) data in Compustat. We construct size, book-to-
market and beta decile portfolios in a similar manner as in FF°>. As in FE the

>We find that using calendar-year returns gives almost identical results to our analysis as
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ME and beta decile breakpoints are determined using only New York Stock
Exchange (NYSE) stocks, while stocks from NYSE, the American Stock
Exchange (AMEX), and Nasdaq are used to determine decile breakpoints
for book-to-market portfolios. To analyze momentum and reversal effects,
we sort stocks based on their returns in period t —1. We explore a wide
range of prior return horizons, ranging from 1 to 60 months, in 3-month
intervals, but we limit our reported results to portfolios formed based on
prior 6-month and 5-year periods.

Once our characteristic-based portfolios are formed, equal-weighted
average portfolio compound returns are calculated for each month of
year t.° As in the previous section, the natural log of (one plus) a stock’s
raw return is used to calculate the stock’s compound return. Similarly, a
month’s actual portfolio compound return is the natural log of (one plus)
the portfolio’s raw return in that month. Annual variances are calculated
using monthly log returns.

2.1 Size Decile Portfolios

Panel A of Table 2 shows the average raw returns, compound returns,
and the estimated components of returns from Eq. (4) for the size (ME)
decile portfolios. The first column of estimates contains the arithmetic
average portfolio raw return, 7,, over the sample period. The pattern
of arithmetic average raw returns across size deciles is similar to that in
Fama and French (1992).” The average return of the small stock (Low
ME) portfolios is generally higher than the average return of the large
stock (High ME) portfolios. While widely known, it is important to note
that the true growth in an investor’s wealth as given by the average actual
compound return, 7,(act.), when holding one of these portfolios is not
reflected accurately by the arithmetic average raw return of the portfolio’s
constituent stocks. While also possibly known, but almost never explicitly
acknowledged, the average portfolio compound returns, 7,(act.), are poor

using July-to-June returns and we therefore report results based on calendar-year returns.

6Although our reported results focus on average monthly returns over year t, we also
examine, but do not report, results over both longer and shorter performance evaluation
periods. We find that our portfolio return decomposition continues to provide insights into
the sources of portfolio returns over these alternative periods, although a detailed analysis
of this would be beyond the scope of the current study.

7We have also conducted our analysis using the FF sample period of 1963 through
1990. We obtain results that are nearly identical to those for our 53-year sample period.
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estimates of the average compound returns of the portfolio’s underlying
assets, Zflzl w7

The pattern in average portfolio compound returns, 7,(act.), is similar
to the pattern in average portfolio raw returns, 7,,. Likewise, the pattern in
estimated average portfolio compound returns, 7, (est.), which is based on
constituent stocks’ average compound returns and variances and portfolio
variance in Eq. (4), conforms quite well to the pattern in actual portfolio
compound returns. However, the average compound return to the under-
lying assets, Zivzl w;-Y;, reveals a pattern that is strikingly different than
that of the average portfolio returns. Specifically, smaller stocks have lower
average compound returns than larger stocks. The excess growth rate
reconciles this apparent contradiction. The decomposition using Eq. (4)
and Eq. (5) shows that the outperformance of the portfolios of smaller
stocks is driven by the excess growth rate, Y;(est.), of those portfolios.

The average portfolio excess growth rates decrease almost monotoni-
cally as the size decile increases from the smallest to the largest stocks. The
same pattern appears in the estimated portfolio return that is calculated
from the components of Eq. (4). The estimated average portfolio return,
7p(est.), in the third column of Table 2 corresponds well to the actual
average portfolio return, y,(act.), in the second column.®

The decrease in portfolio returns as the size decile increases occurs de-
spite the fact that the underlying average stock compound returns increase
as the size decile increases. Thus, the driving factor in the outperformance
of small stock portfolios is the variance of the underlying stocks. For the
entire sample period, the smallest size decile portfolio holds stocks with an
average variance of 0.0308 per month, while the largest size decile portfo-
lio holds stocks with an average variance of only 0.0067 per month. The
variance of the small stocks is enough to generate portfolio excess growth
rates that compensate for the small stocks’ lower returns. The decline in
the portfolio returns as the size of the underlying stocks increases is driven
by the decline in the portfolios’ excess growth rates due to the decline in
the underlying stocks’ variances.

8We have also validated, but do not report, the empirical decomposition of Eq. (4)
by estimating the portfolio return from the equation’s components and comparing it to
the actual portfolio return each year. A regression of the yearly estimated returns on the
returns for an equal-weighted portfolio of CRSP stocks yields a slope coefficient estimate of
1.0, a statistically insignificant intercept coefficient, and an R-squared exceeding 0.999.
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Portfolio 7y 7p(act)  7,(est.) Zivzl Wit Zivzl w02 o’ 7;(est.)
Panel A: Size Deciles

Low 0.0148 0.0121 0.0115 —0.0016 0.0308 0.0047 0.0130
2 0.0113  0.0090 0.0095 0.0020 0.0195 0.0045 0.0075
3 0.0121  0.0099 0.0118 0.0056 0.0166 0.0043  0.0062
4 0.0116 0.0096  0.0106 0.0051 0.0149 0.0040 0.0055
5 0.0117  0.0098 0.0111 0.0063 0.0132 0.0036 0.0048
6 0.0112  0.0095 0.0101 0.0060 0.0115 0.0032 0.0041
7 0.0114  0.0098 0.0110 0.0074 0.0102 0.0030 0.0036
8 0.0106 0.0091 0.0100 0.0066 0.0095 0.0028 0.0033
9 0.0104 0.0091 0.0096 0.0067 0.0083 0.0024 0.0029
High 0.0088 0.0077  0.0082 0.0058 0.0067 0.0020 0.0024
Panel B: Book-to-Market Deciles

Low 0.0086  0.0055 0.0050 —0.0086 0.0335 0.0062 0.0136
2 0.0089  0.0065 0.0065 —0.0028 0.0235 0.0048 0.0094
3 0.0098 0.0076  0.0076 —0.0005 0.0204 0.0041 0.0081
4 0.0093 0.0074 0.0074 0.0000 0.0185 0.0037 0.0074
5 0.0115 0.0097  0.0099 0.0032 0.0170 0.0035 0.0067
6 0.0123  0.0105 0.0106 0.0040 0.0164 0.0033  0.0066
7 0.0135 0.0118 0.0118 0.0055 0.0157 0.0031 0.0063
8 0.0148 0.0131 0.0133 0.0066 0.0163 0.0030  0.0066
9 0.0165 0.0146  0.0145 0.0071 0.0183 0.0035 0.0074
High 0.0213 0.0184 0.0185 0.0071 0.0276 0.0049 0.0114
Panel C: Beta Deciles

Low 0.0104 0.0103 0.0102 0.0030 0.0152 0.0008 0.0072
2 0.0102 0.0101 0.0102 0.0048 0.0117 0.0010 0.0053
3 0.0112 0.0110 0.0110 0.0055 0.0124 0.0015  0.0055
4 0.0107 0.0106  0.0107 0.0047 0.0137 0.0019  0.0059
5 0.0106 0.0104 0.0105 0.0041 0.0152 0.0023  0.0065
6 0.0112  0.0109 0.0110 0.0039 0.0170 0.0028 0.0071
7 0.0107 0.0104 0.0104 0.0027 0.0191 0.0035 0.0078
8 0.0105 0.0101 0.0103 0.0012 0.0227 0.0044 0.0091
9 0.0103  0.0099 0.0099 —0.0007 0.0272 0.0059 0.0107
High 0.0113 0.0104 0.0102 —0.0054 0.0424 0.0112 0.0156

Table 2: Size and Book-to-Market Decile Portfolios.
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Portfolio 7, 7p(act)  7,(est) Zilwi'?i Zlivzlwiviz o 7; (est.)

Panel D: Prior Short-term (6-month) Performance Deciles
Low 0.0092  0.0086 0.0092 —0.0131 0.0522 0.0076  0.0223

2 0.0082 0.0078  0.0078 —0.0045 0.0292 0.0047 0.0123
3 0.0089 0.0086 0.0086 —0.0003 0.0214 0.0035 0.0089
4 0.0094 0.0092  0.0091 0.0020 0.0171 0.0028 0.0071
5 0.0101  0.0099  0.0098 0.0037 0.0145 0.0024  0.0061
6 0.0106 0.0104 0.0104 0.0049 0.0131 0.0021  0.0055
7 0.0113 0.0111  0.0110 0.0054 0.0133 0.0021  0.0056
8 0.0109 0.0107 0.0107 0.0048 0.0142 0.0024  0.0059
9 0.0107 0.0105 0.0104 0.0034 0.0172 0.0031  0.0070
High 0.0094 0.0090 0.0090 —0.0021 0.0271 0.0049 0.0111

Panel E: Prior Long-term (5-year) Performance Deciles

Low 0.0162 0.0155 0.0161 —0.0078 0.0559 0.0081 0.0239
2 0.0103  0.0099 0.0098  —0.0044 0.0333 0.0048 0.0142
3 0.0095 0.0092 0.0092  —0.0011 0.0242 0.0037 0.0103
4 0.0091 0.0089  0.0089 0.0010 0.0187 0.0029  0.0079
5 0.0094 0.0092  0.0091 0.0027 0.0152 0.0023  0.0064
6 0.0101  0.0099  0.0099 0.0041 0.0135 0.0021  0.0057
7 0.0094 0.0092  0.0092 0.0039 0.0127 0.0022  0.0053
8 0.0098 0.0096  0.0096 0.0043 0.0128 0.0023  0.0053
9 0.0090 0.0088  0.0088 0.0029 0.0144 0.0027  0.0059
High 0.0065 0.0063 0.0063 —0.0015 0.0197 0.0042  0.0078

Table 2: (Continued)

Description: This table reports the summary statistics for the estimates of the terms of
Eq. (4) for equal-weighted portfolios formed by size (market capitalization) book-to-market,
beta, and past performance deciles for the sample period of January 1960 through December
2012. The terms for the weighted average return and the weighted average stock variance
(Zivzl w;-¥; and vazl w;-02, respectively) are estimated each year using monthly data,
with that year’s estimate applied to each month within that year. The portfolio variance,
05, reflects the variance across all months in the sample period, while all other columns
reflect the average of the given parameter across all months in the sample period. The
portfolio’s arithmetic average raw return, 7, is reported in the first column of estimates.
The term 7, (act.) reports the portfolio’s average actual compound return (i.e., log return),
while 7,(est.) is the portfolio’s estimated average compound return (i.e., log return) using
Eq. (4). The remaining terms are defined in Eq. (4).

Interpretation: Portfolio compound returns can differ from the underlying components of
those returns for portfolios formed from several stock characteristics. In Panel A, portfolio
returns (Y, (act.)) are negatively associated with market-cap even though average underlying
stock returns (Zivzl w;-¥;) are positively related to market cap. In Panel B, both portfolio
returns and average stock returns are positively associated with book-to-market ratios. In
Panel C, results are consistent with both portfolios and average stock returns having only
weak and non-linear associations with estimates of beta. In Panel D, short-term past returns
have a positive but non-linear association with both portfolio returns and average stock
returns. In Panel E, long-term past returns are positively associated with average stock
returns but negatively associated with portfolio returns.
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2.2 Book-to-Market Portfolios

Panel B of Table 2 shows the average returns and the estimated components
from Eq. (4) for portfolios formed using book-to-market ratio (BE/ME)
deciles. Again, these results are nearly identical to those of FE in that
the lowest deciles have the lowest average performance. In contrast to
the results for the size decile portfolios, the pattern of average portfolio
returns across book-to-market deciles appears to be driven primarily by the
underlying stocks’ average compound returns. That is, the average returns
of low BE/ME stocks are lower than the returns of high BE/ME stocks.

The average stock returns increase monotonically from the lowest
BE/ME decile to the highest BE/ME decile. The spread between the highest
and lowest BE/ME deciles’ average stock returns is 1.57%, while the spread
between the highest and lowest size deciles is only 0.74% (and in the
opposite direction as expected, in that large stocks have higher average
compound returns than small stocks).

As in the size decile results, the average portfolio excess growth rates
decrease monotonically as the BE/ME decile increases because the variances
of the portfolios’ underlying stocks decrease monotonically, except for the
highest BE/ME decile. Across the entire sample period, the lowest BE/ME
decile portfolio’s excess growth rate is 1.36% compared to the highest
BE/ME decile portfolio’s excess growth rate of only 1.14%. However, this
decrease is smaller in magnitude than in the size deciles and is more than
offset by the increase in the underlying stocks’ average returns. Unlike size
decile portfolios, the driving factor in the outperformance of low BE/ME
stock portfolios is the average compound returns of the underlying stocks.

2.3 Beta Portfolios

When stocks are sorted by their (lagged) beta estimates, we find no re-
lationship between beta decile rankings and portfolio returns. This is
consistent with FE Panel C of Table 2 presents the components of returns
based on deciles formed from beta, as estimated over the previous 5-year
period using the CRSP value-weighted index. Although portfolio returns
are unrelated to beta, average stock returns show a non-linear and negative
association with beta. Contrary to the traditional Capital Asset Pricing
Model (CAPM), we find that higher beta estimates are generally associ-
ated with lower average stock returns. The negative association between
average stock returns and beta is almost perfectly balanced by a positive
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association between excess growth rates and beta, resulting in essentially
no correlation between beta and portfolio returns.

2.4 Portfolios Formed Based on Past Performance

Existing studies of the persistence of past performance are complicated by
several considerations. Returns at very short horizons (i.e., less than one
month) may display substantial microstructure effects and other biases. At
short-to-medium horizons, a momentum effect has been documented where
top-performing portfolios in period t — 1 have above-average performance
in period t. At longer horizons (i.e., 3 to 5 years) a reversal, or contrarian,
effect appears to dominate, with portfolios of the worst performing stocks
from period t — 1 performing relatively better in period t. Table 2 displays
the components of monthly returns over year t for portfolios formed from
performance during prior horizons of six months (Panel D) and five years
(Panel E).

We find that the momentum effect is a robust empirical characteristic of
average stock returns (Zﬁvzl w;-7;) in year t, regardless of the prior return
horizon used to form portfolios. That is, if a portfolio’s stocks had high
returns in the prior period then that portfolio’s stocks tend to have high
returns, on average, in the current year. Although the relationship between
average stock returns and prior performance is generally upward sloping,
the pattern is non-linear. The pattern in average compound stock returns
increases monotonically at first, peaking at decile 7, and then decreases
slightly for the remaining deciles.

The momentum effect that we find for portfolios formed from past
6-month performance periods (consistent with existing papers such as
Jegadeesh and Titman (1993)) is also present for portfolios formed from
long-term (5 year) past performance periods (apparently contrary to the
reversal effect documented by De Bondt and Thaler (1985) and De Bondt
and Thaler (1987)). In untabulated tests, we find this result to be robust
to a wide range of portfolio formation horizons ranging from one month to
five years. That is, a momentum effect in underlying average stock returns
(over a current period of one year) is a pervasive effect across all portfolio
formation horizons. One important distinction here is that the results
mentioned above apply to the average compound returns (Zflzl w;-7;) of
the stocks in each portfolio, while existing research generally examines
portfolio returns (fp or ?p).
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Consistent with the published literature, at the portfolio level we also
observe momentum effects for portfolio returns (7,) only when portfolios
are composed based on past return horizons of two years or less. When
portfolios are composed based on prior performance periods of longer than
two years, then the excess growth effect dominates over the momentum
effect present in the returns (Zﬁ\lzl w;-¥;) of the underlying stocks for the
stocks that performed poorly in period t — 1 and we therefore observe a re-
versal pattern in portfolio returns. More precisely, the portfolios composed
of stocks with low returns in the prior 2-to-5 year period have sufficiently
large excess growth rates (}7;) arising from the variance of those stocks

(Z]ivzl wi-crl.z) so that the current portfolio return (y,) is high enough to dis-

play a “reversal” effect, even though the average stock returns (Z?’Zl Wi 7;)
of the portfolio’s constituents are still relatively low on average.

Overall, we find that the momentum effect can be generalized to under-
lying stock returns only when portfolios are formed based on prior return
horizons of two years or less. The contrarian, or reversal, effect for portfo-
lios formed based on long-term (two years or greater) prior performance is
only a portfolio-level effect that cannot be generalized to the underlying
stocks.

3 The Cross-Section of Stock Returns

Beginning with Fama and MacBeth (1973), cross-sectional regressions
have been used to examine the association between stock returns and
stock characteristics. Cross-sectional analysis appears to have the desirable
property of ease of interpretation, in that the slope coefficients from cross-
sectional regressions reflect a direct association between a firm’s return
(dependent variable) and the firm’s characteristics (independent variables).
The attribution of the portfolio’s return in the previous sections shows that
a difference can exist between the returns to a portfolio that is formed on
a specific stock characteristic and the average return on the underlying
stocks with that characteristic. To further examine the role of stocks’
variances in explaining the association between a stock’s return and its other
characteristics, we estimate Fama-MacBeth-style cross-sectional regressions
for both raw and compound (log) stock returns.

The results in the previous section raise questions about the commonly
accepted view that smaller firms have higher returns. To further examine
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this, we include the same-year variance of a stock’s monthly returns (Vari-
ance) as an independent variable in cross-sectional regressions, in addition
to using In(ME) and In(BE/ME) to measure a firm’s size and market-to-book
ratio, respectively. We include a stock’s beta estimate, using the pre-ranking
beta estimate from FE as a control variable. If the size effect in portfolio
returns is due to stock variances, then In(ME) should not be negatively
associated with returns when Variance is included in the regression. More
importantly, based on the result in the previous section that average stock
returns are higher for firms in the larger size deciles, we expect the average
slope on In(ME) to be positive when using log returns as the dependent
variable.

We report the time-series average slope coefficients from monthly cross-
sectional regressions in Table 3. As shown in Panel A, the average slope
on In(ME) in the monthly raw return univariate regressions is negative
over the period from January 1960 through December 2012.° The average
coefficient on In(BE/ME) is statistically significant and positive. Variance
also takes a significant and positive coefficient estimate, while beta is
unrelated to raw returns. In the multivariate regressions with all four
explanatory variables, the average coefficients on In(ME) and beta are
insignificant, while the average coefficients on In(BE/ME) and Variance
remain positive and statistically significant.

Our return decomposition and cross-sectional regressions show that
the volatility of small stocks is the primary contributor to small stock port-
folios’ returns, suggesting that caution should be exercised when inferring
any long-term return premium on a stock due to In(ME). With the aver-
age cross-sectional correlation between In(ME) andVariance of log returns
being -0.46, the effect of multicollinearity in the cross-sectional regres-
sions must be considered. We note that the average slope coefficient on
Variance remains relatively stable when In(ME) is added to the model.
Moreover, the results using stocks’ log returns as the dependent variable
in regressions casts more doubt on a size effect in individual stock returns.
Over the entire sample period, the coefficient on In(ME) in monthly stock
log return regressions is, on average, positive and statistically significant.
The average coefficient remains positive but statistically insignificant in
multivariate regressions. The average coefficient for In(BE/ME) remains

“We have estimated the cross-sectional regression analysis using the FF sample period
of 1963-1990 and obtain similar results.
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Panel A: Average Slope Coefficients

Dependent Variable: Raw Returns Dependent Variable: Log Returns

In(ME) In(BE/ME) Variance Beta In(ME) In(BE/ME) Variance Beta

—0.0014 0.0009
(—3.20) (2.28)
0.0040 0.0049
(4.98) (6.42)
0.3597 —0.1633
(3.72) (—1.81)
0.0022 —0.0038
(1.33) (—2.32)

—0.0002  0.0026  0.4413 —0.0012 0.0001  0.0025 —0.0708 —0.0014
(—0.06) (3.92) (5.03) (=0.90)  (0.26) (3.90) (—0.87) (—1.06)

Panel B: J Test of In(ME) and Variance

Dependent Variable: Raw Returns

In(ME)  Pyaniancey  Variance 7, ovey

0.0031  1.8716
(0.12)  (22.79)

0.2950  0.8108
(3.77)  (2.07)

Table 3: Average Slope Coefficients from Cross-Sectional Regressions.

Description: In Panel A. each row reports the time-series average slope coefficients from
cross-sectional regressions for the sample period of January 1960 through December 2012.
Monthly stock raw returns and compound returns (i.e., log returns) are used as dependent
variables, with the beginning-of-year market cap (In(ME)), beginning-of-year book-to-
market ratio (In(BE/ME)), prior 5-year beta estimate, and same-year log return variance
(Variance) used as independent variables. Rows one through four each report results from
univariate regression models, while row five reports results from a multivariate regression
model that includes all four independent variables. Panel B reports the second stage results
from a J Test (Davidson and MacKinnon, 1981) of In(ME) and Variance in the cross-sectional
regressions. In the first stage, returns are regressed on In(ME) or Variance. In the second
stage, the predicted values of returns (#*) are used along with the actual values of In(ME)
(row 1) or Variance (row 2) to explain actual returns. T-statistics are reported in parentheses
below the coefficient estimates.

Interpretation: Panel A of Table 2 compares the usefulness of stocks’ market caps (In(ME)),
book-to-market ratios (In(BE/ME)), variances, and betas, to explain the cross-section of
both raw returns and compound (log) returns. The multivariate regression coefficients
reported in Row 4 show that variance, but not market cap, is significant in explaining raw
returns, although variance is insignificant in explaining log returns. This is consistent with
a mechanical relationship between variance and raw returns. The J-test of Panel B confirms
that stock variance explains the cross-section of stock returns better than market cap.
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positive and significant, while the average coefficient estimate for beta is
insignificantly negative in multivariate regressions. The average slope on
stocks’ own variances is statistically insignificant and negative in explaining
log returns.

We conduct a J test Davidson and MacKinnon (1981) to determine
whether size or variance appears to be the true underlying factor in the cross-
section of monthly raw stock returns. In the first stage of this test, returns
are regressed on variance (log size) and the resulting coefficient estimates
are used to compute a predicted value of returns based on information from
variance (size). In the first row of Panel B, actual returns are regressed on
the actual values of size and the predicted values of returns when variance
is used to forecast returns. The second row of Panel B reports estimates
from a model using the actual values of variance and the size-predicted
values of returns. The first row indicates that size has no additional power
to explain returns in a model that accounts for predicted returns based
on information derived from variance. The second row indicates that
variance retains the power to explain returns after information from size is
incorporated into the model. Therefore, Panel B of Table 3 shows that we
are able to reject In(ME) in favor of Variance as the true underlying factor
in explaining the cross-section of stock returns. The results from the J test
are consistent with the results from the portfolio return decomposition that
attributes the source of outperformance in small-stock portfolios relative
to large stock portfolios as originating from the variance of the underlying
stocks.

Finally, we note that the average slope coefficient for own-stock vari-
ance in raw return regressions is close to one-half, as implied by Eq. (1).
In also considering the result of no statistically significant relationship
between log returns and either In(ME) or Variance, we conclude that the
relationship between raw returns and stock variances simply reflects the
mathematical description of stock returns in Eq. (1). That is, the use of
arithmetic averages and raw returns rather than compound returns re-
sults in apparent relationships that have a mathematical rather than an
economic explanation. When variables that are highly correlated with vari-
ance, such as size, are used in research methods that implicitly involve
portfolios through the use of arithmetic averages, results must be inter-
preted with caution and the mathematical impact of variance must be
considered.
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4 Summary and Conclusion

We employ a mathematical parsing of portfolio compound returns into two
key sources: 1) the average compound return of the portfolio’s underlying
stocks; and 2) the “excess growth rate” of the portfolio that is due to the un-
derlying stocks’ return variances and covariances. While the decomposition
that we examine has been known to the literature for at least 25 years, it
has been rarely cited; and, to our knowledge, we are the first to utilize this
mathematical relationship in comparing individual stock characteristics
to portfolio returns. We demonstrate that using the return components
can yield new and meaningful insights into the sources of performance of
commonly examined portfolios in the literature.

We provide new evidence regarding the oft-cited size, book-to-market,
and momentum effects by examining the components of the returns to port-
folios formed based on these factors.!® We show that small firms’ average
compound returns are lower than large firms’ average compound returns.
However, because small firms generally have higher return variances, port-
folios of small stocks have higher excess growth rates than portfolios of
large firms. It is the variance-induced excess growth rate that is primarily
responsible for the outperformance of small stock portfolios relative to large

9In addition to sorting stocks based on underlying characteristics such as size, book-
to-market ratios, and past returns, we also examine portfolios based on stocks’ exposures
to factors derived from such underlying characteristics. For example, to analyze the size
effect, instead of sorting stocks directly based on market cap, we can first run a time-series
regression of a stock’s returns on the small-minus-big (SMB) portfolio returns and then
sort by the coefficient estimate (i.e., factor loading) from this regression.

The factor-based portfolio returns that we observe are consistent with other studies of
factor-based portfolios, such as Daniel and Titman (1997). Our portfolio return decompo-
sition shows that the components of portfolio returns display similar patterns regardless
of whether portfolios are formed directly from stock characteristics or indirectly based on
factor exposures. We therefore do not tabulate results for portfolios formed on the basis of
factor loadings.

Our method can also be used to examine additional factor-based portfolios, such as those
derived from the liquidity measures of Pastor and Stambaugh (2003). For example, for
portfolios formed from exposure to the level of the Pastor-Stambaugh liquidity measure,
we find that portfolio returns are positively related to factor loadings across deciles, while
the average underlying stock returns display a weak negative (and non-linear) association
with the liquidity factor loadings. Therefore, portfolios formed based on exposure to this
market-liquidity factor appear to be another example of a portfolio return pattern that is
driven by the variance and excess growth rates of the underlying stocks, rather than by the
average compound returns of the underlying stocks.
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stock portfolios. A similar effect is shown to exist for “contrarian” portfolios.
In contrast, the performance of portfolios formed by sorting stocks by their
book-to-market ratio is primarily determined by the performance of the
underlying stocks. That is, the higher average compound returns of higher
book-to-market stocks results in higher portfolio returns, overcoming the
offsetting effect that excess growth rates are lower for these portfolios.
Stocks displaying short-term momentum (based on 1-month to 2-year prior
returns) also display patterns in portfolio returns that are generalizable to
the underlying stocks in the portfolio.

Cross-sectional regressions of monthly raw returns and log returns
confirm the results from the decomposition of portfolio returns. Specifically,
the apparent cross-sectional relationship between size and stock raw returns
is not robust to the inclusion of stock variance in the model, while the book-
to-market effect is unchanged when variance is included. Furthermore, no
cross-sectional relationship is evident between stock log returns and either
size or own-return variance, but a firm’s book-to-market ratio is positively
associated with its average log return.

The implications and applications of decomposing portfolio returns
into effects due to stock returns and portfolio excess growth rates are wide-
ranging. Whenever the returns of portfolios composed of high-volatility
stocks are compared to benchmarks or control portfolios of lower-volatility
stocks, we can expect to observe differences due to the excess growth
rates of the portfolios. This potentially applies to any portfolio composed
of relatively more volatile sample stocks, with the volatility arising due
to measurement techniques (i.e., bid-ask bounce), the time period (i.e.,
January returns), firm characteristics (i.e. small size, high leverage, recent
initial public offering (IPO) activity, or low liquidity), or return patterns
(i.e., momentum or contrarian). Even in the wider context of other social
sciences that study phenomena subject to compound growth rates, any
time the growth rate of a high-volatility treatment group is compared to a
lower-volatility control group, there could be differences due to the excess
growth effect. The current study demonstrates how the concept of an
excess growth rate can explain portfolio returns in the context of several
common characteristic-based portfolios. The ability of portfolio excess
growth rates to explain other documented patterns in portfolio returns is a
potentially valuable avenue for future research.
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