MATH 5305: Assignment 1

1. Let A_{1} and A_{2} be two events related to an experiment. Given

$$
P\left(A_{1}\right)=\frac{1}{2}, P\left(A_{2}\right)=\frac{1}{3}, P\left(A_{1} \cap A_{2}\right)=\frac{1}{4}
$$

Find the following probabilities
(a) $P\left(A_{1} \cup A_{2}\right)$ [3 marks]
(b) $P\left(A_{1}^{c} \cup A_{2}^{c}\right)$ [3 marks]
(c) $P\left(A_{1}^{c} \cap A_{2}^{c}\right)$ [3 marks]
(d) $P\left(A_{1}^{c} \cup A_{2}\right)$ [3 marks]
(c) $P\left(A_{1}^{c} \cap A_{2}\right)$ [3 marks]
2. Let $P(B)>0$ so that $P(A \mid B)$ is defined.
(a) If $A \subset B$, what is $P(A \mid B)$? [$\mathbf{3}$ marks]
(b) Show that if $P(A)=0$, then $P(A \mid B)=0$ [3 marks]
(c) Show that if $P(A)=1$, then $P(A \mid B)=1$ [3 marks]
3. If A and B are independent events, show the following
(a) A and B^{c} are independent [5 marks]
(b) A^{c} and B^{c} are independent [5 marks]
4. A fair die is thrown 10 times. What is the probability of getting 6 in 4 throws? [$\mathbf{5}$ marks]
5. What is the probability that the birthdays of 7 people will fall on 7 different days of the weeks, assuming equal probabilities for the seven days? [5 marks]
6. From a deck of 52 cards, 3 cards are drawn at random. Find the following probabilities
(a) The cards are of the same denomination [5 marks]
(b) 2 are of the same denomination and 1 different [5 marks]
(c) All are of different denominations [5 marks]
7. A box contains 40 envelopes of which 25 are ordinary and 16 are unstamped. The number of unstamped ordinary envelopes is 10 . What is the probability that an envelope chosen at random from the box is a stamped non-ordinary envelope? [$\mathbf{6}$ marks]
8. Let A and B be two events with $P(A)=0.4, P(B)=p$, and $P(A \cup B)=0.7$.
(a) Find the value of p for which A and B are mutually exclusive [5 marks]
(b) Find the value of p for which A and B are independent [5 marks]
9. It has been found from past experience that of the articles produced by a factory, 20% come from Machine 1, 30% come from Machine 2, and 50% come from Machine 3. The percentages of satisfactory articles among those produced are 95% for Machine 1, 85% for Machine 2, and 90% for Machine 3.
(a) An article is chosen at random from a lot. What is the probability that it is satisfactory? [5 marks]
(b) Assuming that the article is satisfactory, what is the probability that it was produced by Machine 1 [5 marks]
10. 5 non-similar pairs of socks are in a closet. 4 socks are chosen at random. What is the probability that there will be among the 4 socks chosen
(a) No complete pair [5 marks]
(b) Exactly 1 complete pair [$\mathbf{5}$ marks]
(c) Exactly 2 complete pairs [5 marks]

Answers to selected questions

4. 0.054
5. 0.006
6. (a) 0.002 , (b) 0.169 , (c) 0.828
7. 0.225
8. (a) 0.381 , (b) 0.571 , (c) 0.048
