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Abstract
Traumatic injury to the central nervous system is a significant health problem. There is no effective
treatment available partly because of the complexity of the system. Implementation of
multifunctional micro- and nano-device based combinatorial therapeutics can provide biocompatible
and tunable approaches to perform on-demand release of specific drugs. This can help the damaged
cells to improve neuronal survival, regeneration of axons, and their reconnection to appropriate
targets. Nano-topological features induced rapid cell growth is especially important towards the
design of effective platforms to facilitate damaged neural circuit reconstruction. In this study, for the
first time, feasibility of neuron-like PC12 cell growth on untreated and easy to prepare nanotextured
surfaces has been carried out. The PC12 neuron-like cells were cultured on micro reactive ion
etched nanotextured glass coverslips. The effect of nanotextured topology as physical cue for the
growth of PC12 cells was observed exclusively, eliminating the possible influence(s) of the enhanced
concentration of coated materials on the surface. The cell density was observed to increase by almost
200% on nanotextured coverslips compared to plain coverslips. The morphology study indicated that
PC12 cell attachment and growth on the nanotextured substrates did not launch any apoptotic
machinery of the cell. Less than 5% cells deformed and depicted condensed nuclei with apoptotic
bodies on nanotextured surfaces which is typical for the normal cell handling and culture. Enhanced
PC12 cell proliferation by such novel and easy to prepare substrates is not only attractive for neurite
outgrowth and guidance, but may be used to increase the affinity of similar cancerous cells (ex: B35
neuroblastoma) and rapid proliferation thereafter—towards the development of combinatorial
theranostics to diagnose and treat aggressive cancers like neuroblastoma.

Keywords: PC12, enhanced cell growth, reactive ion etching, nanotextured coverslip, atomic
force microscopy, central nervous system healing
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1. Introduction

Traumatic injury to the central nervous system (CNS) is a
significant health problem with injuries to the spinal cord and
brain accounting for approximately 265 000 and 1.5 million
new injuries each year, respectively [1]. Regeneration of
axons, guided by mechanical, electrical, magnetic, chemical
and/or physical cues has been explored for neural circuit
reconstruction following CNS related injuries [2–5]. The
functional recovery from CNS injury requires improved
neuronal survival, regeneration of axons, and their recon-
nection to appropriate targets [6]. However, the efficacies of
the existing strategies are limited since the CNS is refractory
to axonal regeneration and relatively inaccessible to many
pharmacological treatments [1]. For example, to promote the
regeneration of axons, inhibitory molecules need to be
destroyed to create a growth-permissive environment or the
response of axons contacting these inhibitors must be
decreased [7], which requires superfine precision in the
intracellular environment. Contemporary treatment strategies
used for CNS related injury include surgical, thermal, and
pharmacological interventions largely targeted at decreasing
neuronal loss and the inflammatory response initiated after
acute injury. Stem cell therapies provide fascinating alter-
natives for treating chronic CNS injuries and in improving
nervous system regeneration [1]. However, the particular cells
used in the pre-clinical studies are oligodendrocyte precursors
[8]. Pre-clinical studies using undifferentiated stem cells
indicate that these cells do not form neurons in the CNS and
may lead to the development of tumors [9, 10]. Considering
the complexity of CNS injuries and recovery responses, the
development of novel combinatorial therapeutic strategies
that trigger axon regeneration and facilitate connectivity need
to be explored [11].

Recent progress in nanoscale engineering offers exciting
alternatives for designing biocompatible micro- and nano-
vectors for controlled release of therapeutic and diagnostic
agents to targeted cells to improve treatment efficacy and
evaluation [1, 12]. It has been observed that cell capture,
growth, adhesion, translocation behavior, and orientation are
influenced by nanoscale topography of the substrates [13–19].
In the areas of tissue engineering, recent investigations have
reported that nanostructured scaffolds can significantly
increase densities of certain cells [20, 21], and the nano-
topological features have various impacts on cell functions
[21–27] by offering biomimetic cell-stimulating cues. It has
been also observed that the basement membranes of most
tissues are composed of complex mixtures of nanoscale
structures [27]. Cells sense nanotopography and react by
bridging or conforming in a selective manner. Moreover,
nanoscale patterning significantly impacts the organization
and type of focal adhesions either by disrupting their forma-
tion or by inducing specific integrin recruitment [21, 27].
Since integrins are directly linked to the nuclei, gene
expression is indeed affected due to the cellular response to
nano-topological features.

Despite being an attractive subject of investigation,
interactions between neurons or neuron-like cells and nano-
textured features have remained largely unexplored thus far.
Some recent studies have observed promising outcomes on
cell behavior and neurite outgrowth [28–32]. It has been
observed that neuronal network morphology appears to be
more preferential on the nitrogen rich titanium nitride (TiN)
films and also with reduced nano-topographical features [28].
Nano-grooved surface patterns [29], and nanotextured gal-
lium nitride (GaN) surfaces [30] have been reported to
enhance adhesion/growth/orientation of PC 12 neuron model
cells. Guided neurite outgrowth is also possible by meticu-
lously designed nano-patterned substrates [2, 32], which
minimizes the complications of confinement and offer an
efficient model to investigate the underlying mechanisms of
topological neurite guidance. It has been observed that the
overexpression or down-regulation of specific biomolecules
in nano-patterned regions may be inducing and directing the
neurite growth [2].

Although the aforementioned reports describing neuron
or neuron-like cell response to nano-topological features are
indeed promising, choice of substrate materials, coating pro-
cedures (for example, silicon wafers [28], TiN film [27]) and
lack of biocompatibility (e.g. GaN nanowires) add substantial
complexities for potential biomedical applications. Although
neuronal alignment on glass substrates has been reported [32],
these substrates were modified with polymer deposition, and
further poly-D-lysine coating. This paper presents neuron-like
cell growth on un-treated, easy to prepare nanotextured sur-
faces. In this work, the bare glass coverslips were selected as
the substrate material. These are extensively used for cell
culture related biomedical applications and are common
substrates in fluorescence/confocal/light microscopy. The
high light transmission capability also makes these attractive
for applications requiring optical irradiation, an option which
is rapidly gaining traction in the area of neuro-science
research. Thus, the PC12 neuron-like cells were cultured on
untreated and nanotextured coverslips, and for the first time,
the effect of nanoscale random topology was observed
exclusively as physical cue for the growth of PC12 cells. This
eliminated the possible influences, which may originate from
the enhanced concentration of proteins and materials from the
media on the nanotextured surface, polymer surface chain
bonds, surface free energy changes, etc. In this work, it is
established that micro reactive ion etched (micro-RIE) glass
coverslips enhanced the PC12 cell proliferation substantially,
when compared to plain coverslips. The enhancements were
even higher than the ECM treated cell culture substrates.
Enhanced PC12 cell proliferation is especially promising,
since this further bolsters the potential of neurite outgrowth
and connectivity. The PC12 cells provide an excellent neu-
ronal model. These results are major advancement towards
the design of an effective nano-platform to achieve enhanced
and controlled neural cell growth and differentiation, which
will be beneficial to treat various neuro-degenerative
disorders.
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2. Materials and methods

2.1. Preparation of nanotextured glass substrates

The cover glasses were cleaned with isopropyl alcohol (IPA),
rinsed in deionized (DI) water and dried in nitrogen. A
reactive ion etching (RIE) system (Technics Micro-RIE Series
800 Plasma System) was used to create nanotexture on the
substrates. The etching was performed using the mixture of
oxygen (O2) and carbon tetrafluoride (CF4) for 45 min
(10 sccm O2 and CF4, 250Watt, 250 mTorr). After etching,
each substrate was cleaned in sonicated IPA followed by
cleaning in piranha solution (H2O2:H2SO4, 1:3) and DI water.

2.2. Surface characterization using atomic force
microscope (AFM)

Surface texture of the coverslips was evaluated qualitatively,
and quantitatively with a Dimension 5000 AFM. The root
mean square surface roughness was measured for both plain
and nanotextured coverslips. Micrographs of the samples
were captured in the ambient air with 15%–20% humidity at a
tapping frequency of approximately 300 kHz. The field
measured was 5 μm×5 μm at a scan rate of 1 Hz with 256
scan lines.

2.3. Scanning electron microscope (SEM) and elemental
analysis

SEM was also used to examine surface texture. The samples
were coated with 5 nm of gold to avoid charging before
taking SEM micrographs. The micrographs were taken at
12 kV accelerating voltage and 30 μm aperture. Energy dis-
persive x-ray spectroscopy (EDS) was also done to identify
and quantify the surface elements of plain and nanotextured
coverslips. An EDS detector (EDAX, Genesis) was attached
to the SEM. The SEM was set at a 15 mm working distance
with 20 kV accelerating voltage and data were recorded fol-
lowed by mapping analysis.

2.4. Contact angle measurements

Contact angles for plain and nanotextured coverslips were
measured using a contact angle goniometer (NRL-100; Rame-
Hart, Washington, DC). A 10 μl water droplet was placed on
the sample and the contact angle of the water-substrate
interface was recorded by visual observation through a
microscope. On average, 5 measurements were taken for each
substrate.

2.5. Cell culture and treatment

PC12 cells, which are derived from rat pheochromocytoma,
were purchased from ATCC (Manassas, VA). These were
cultured at 37 °C in 5% CO2 in F-12 nutrient mixture with
Kaighn’s modification (F12K) containing 2.5% fetal bovine
serum and 15% horse serum (both from Invitrogen, Carlsbad,
CA). A hemocytometer was used to count cells in the stock
solution and volumes of the seeding solutions (5000 cells cm−2)

were calculated. To obtain a homogeneous suspension, cells
were micro pipetted several times before transfer. The cells
were then plated on the plain coverslips, nanotextured cover-
slips and tissue culture treated membranes. These three samples
were placed in 24-well tissue culture plates (TCPs). The cells
were allowed to grow for 48 h for surface attachment. All the
experiments were performed in triplicates.

After 48 h of cell growth and attachment, cultures were
washed twice with PBS and placed into serum-free F-12K
with or without 100 ng ml−1 nerve growth factor β subunit
(β-NGF, Sigma-Aldrich, St. Louis, MO), added daily for
96 h. Cultures were fixed in 4% paraformaldehyde and 2%
gluteraldehyde in PBS and washed twice in PBS. For cell
density assessment, bright-field images (4–5 images/condi-
tion/experiment) were captured through a 10× objective on a
Vee Gee Vanguard 1491 INi inverted microscope. Nuclear
morphology was assessed using confocal images captured
through a 64× objective from cells labeled with 4′,6-diami-
dino-2-phenylindole (DAPI, Ex=405 nm, Em=450/
35 nm), following treatment containing normal and nano-
textured glass coverslips and tissue culture treated membranes
in 24-well TCPs as growth surfaces.

3. Results and discussions

3.1. Surface topography of nanotextured substrates

Micro-RIE has been reported to create uniform nanotextured
glass and polymer substrates previously [17–19]. Micro-RIE
also provided reasonably uniform nanotexture on glass cov-
erslips as well. The measured average roughness of plain and
nanotextured coverslips were 11.34±2.25 nm and
105.06±17.87 nm, respectively. The AFM micrographs of
plain and nanotextured surfaces are shown in figure 1.

3.2. Elemental analysis and compositional mapping

AFM provided both qualitative and quantitative information
of the roughness of the surfaces. SEM was used for qualita-
tive assessment of nanotextured glass coverslips. The SEM
micrograph of nanotextured coverslip is shown in figure 2(a).
EDS was performed on the sample surfaces to observe the
compositional mapping [17, 18]. This analysis showed that
there was no chemical effect of RIE on elemental composition
of coverslips. The change in elemental composition of glass
coverslips could have affected the growth of cells. EDS ele-
mental analysis of plain coverslips showed the predominant
presence of oxygen and silicon (figure 2(b)) which was
identical to nanotextured coverslips figure 2(c)). Therefore,
etching did not make any change in the chemical nature of
coverslips.

3.3. Contact angle measurement analysis

Contact angle from a water droplet provides the measurement
of hydrophobicity or hydrophilicity of a surface [17, 18]. The
hydrophilicity of the substrate is necessary to obtain better
attachment and proliferation of cells. It is known that contact
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angle is more than 90° for hydrophobic surfaces and less than
that for hydrophilic surfaces [17, 18]. Nanotexturing aug-
ments the hydrophobicity of hydrophobic surfaces and
hydrophilicity of hydrophilic surfaces. The contact angles of
all experimental surfaces were measured and their average
values with standard deviations are given in table 1. Glass is
hydrophilic by nature and nanotexturing enhanced its
hydrophilicity in this case.

3.4. PC12 cell growth on nanotextured surfaces

The PC12 cell growth was observed in the presence and
absence of β-NGF in the culture media on the three substrate
types. In all cases, the cell densities were calculated by ana-
lyzing micrographs using ImageJ.

In the absence of β-NGF in the culture media, the density
of the cells was observed to attain the values of 475±86 and
310±76 per mm2 for the TCPs and the plain coverslips
substrates, respectively. On the other hand, for nanotextured
coverslips the cell density value surged to 612±95 per mm2,
demonstrating ∼200% increase compared to plain coverslips,
and significantly higher than the TCP substrates (figure 3).
Next, the cell growth was observed in the presence of β-NGF
in the culture media, which is biologically active and advo-
cates axon growth [1]. In this case, cell densities on TCP,
plain, and nanotextured coverslips attained the values of
437±69, 344±89, and 649±49 per mm2, respectively
(figure 3). Observed PC12 cell growth was significantly
higher in both cases (±β-NGF) on nanotextured coverslips
compared to plain surfaces (figure 3).

One-way analysis of variance depicted statistically sig-
nificant differences (p-value<0.01) in the cell density values
between plain and nanotextured coverslips for both the cases.
The presence of β-NGF did not significantly impact the cell
growth. It should be noted that during these experiments, the
substrates were not subjected to any kind of ECM treatment,

such as collagen [33, 34], laminin [35–37], or fibronectin
[30, 38, 39] etc, each of which possesses the potential to
provide better surface attachment and subsequently neurite
elongation from the neuron or neuron-like cells. Additionally,
the laminin treatment would undermine or overstate the
effects of nanotextured features. Since nanotexture offer lar-
ger effective surface area, these can lead to higher surface
density of laminin, consequently resulting in faster cell
growth. In essence, only the effect of nanoscale random
texture was responsible for the growth of PC12. This elimi-
nated the possible influences which may have originated from
the enhanced concentration of coated materials on the nano-
textured surface.

Proper cell attachment is imperative for the growth, dif-
ferentiation, and survival of cells. Nanotexture provide a
biomimetic cell-stimulating cue as cells in vivo contact many
nanotextures and not the plain interfaces because of the pre-
sence of complex nanoscale structures in the basement
membrane of various tissues, making the interaction natural
and easier [21]. Moreover, nanotextured features significantly
influence the interfacial forces, focal adhesion, cytoskeletal,
and membrane receptor organization [24], and as a result,
regulate cell function in a noninvasive and non-biological
manner [21]. The cell morphologies were thus modulated by
nano-engineering the surface topology, making substantial
local biomechanical deformations to activate specific signal-
ing cascades that eventually regulated cellular growth. This
cell growth was independent of the ECM agents.

Figure 1. AFM micrographs of (a) plain and (b) nanotextured coverslips.

Table 1. Contact angles measurement on plain and nanotextured
coverslip surfaces.

Surface type Plain Nanotextured

Contact angle 25.4±1.14° 12.60±1.52°

4
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The nanotexturing not only provided larger effective
surface area, it offered biomimic surface and enhanced the
adhesion of cells by augmenting cell-surface interactions.
Our prior work [12] on assessment of cytoskeletal micro-
tubules and actin filaments arrangement for PC12 cells
indicates that nanotextured features enhance the level of
mRNA expression of β3-tubulin in PC12 cells to facilitate
better cell attachment, as has been observed by others as
well [40].

3.5. Nuclear morphology of cells

Nuclear morphology was assessed by observing the DAPI
stained cell nuclei. This showed the induction of apoptosis as

a result of the presence of nanotexture on the coverslip sub-
strates. Very little fragmentation, blebbing or DNA con-
densation were seen in the cells grown on the nanotextured
surfaces, when compared to the cells from normal glass
coverslips or TCP membranes. Most of the cells had round
and homogeneous nuclei as can be seen in figures 4(a)–(c)
(negative β-NGF data not shown). Quantification of pyknotic
nuclei, which is indicative of cell death [41], is displayed in
figure 4(d). It was observed that between 4% and 8% cells did
have deformed and condensed nuclei with apoptotic bodies,
which is typical for the normal handling and culture pro-
cesses. Just like the data of figure 3, cytoplasmic blebbing and
irregularities in shape were absent in cells grown on the
nanotextured coverslips in both cases of positive β-NGF and

Figure 2. (a) SEM micrograph of a nanotextured glass substrate; EDS elemental composition of (b) plain and (c) nanotextured glass
coverslips.
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negative β-NGF. All these results indicate that PC12 cell
attachment and growth on the nanotextured substrates did not
incur cellular apoptosis.

4. Conclusions

Micro-RIE provided a rapid and cost-effective way of fabri-
cating nanotextured glass coverslips that were used as sub-
strates for neuron-like cell culture. Nanonanotexture was found
to stimulate the growth of PC12 cells in culture even in the
absence of any ECM treatments such as collagen, laminin etc.
The cell density was observed to increase by almost 200% on
nanotextured glass coverslips compared to plain ones. The
effect of nanotexture as a physical cue on neuron-like cell
growth has been investigated for the first time. The

morphology study indicated that PC12 cell attachment and
growth on the nanotextured substrates did not launch any
apoptotic machinery of the cell. Coupled with the capability of
inducing enhanced proliferation, these substrates carry excel-
lent potential to be used for neural cell attachment, which is the
precursor of enhanced differentiation that can be used to
manipulate axon regeneration and guidance to facilitate neural
circuit reconstruction. Finally, since the PC12 neuron-like cell
attachment and proliferation behavior is very similar to that of
the B35 neuroblastoma cells (in many cases), these micro-RIE
glass coverslips are expected to increase the affinity of B35
cancer cell attachment as well and result into better B35 cell
capture and rapid proliferation thereafter. This opens an inter-
esting front of possibilities of developing combinatorial ther-
anostics approaches to diagnose and treat aggressive cancers
like neuroblastoma.

Figure 3. Micrographs of PC12 cells grown on (a) TCP; (b) plain cover glass; (c) nanotextured coverslip. (a)–(c) Were treated with
100 ng ml−1 β-NGF. PC12 cell micrographs with no β-NGF on (d) TCP; (e) plain cover glass and (f) nanotextured coverslip. (g) Density of
PC12 cells on these surfaces.
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