COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 134 (2016) 53-67

journal homepage: www.intl.elsevierhealth.com/journals/cmpb

An accelerated framework for the classification
of biological targets from solid-state micropore

data

CrossMark

Madiha Hanif “*<, Abdul Hafeez ¢, Yusuf Suleman ¢,
M. Mustafa Rafique’, Ali R. Butt ¢, Samir M. Igbal *>%%"*

@ Nano-Bio Lab, University of Texas at Arlington, Arlington, TX 76019

® Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019

¢ Nanotechnology Research Center, University of Texas at Arlington, Arlington, TX 76019

4 Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060
¢ Department of Computer Science and Engineering, University of Texas at Arlington, Arlington, TX 76019

fIBM Research, Ireland

& Department of Electrical Engineering, University of Texas at Arlington, Arlington, TX 76019
b Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA

ARTICLE INTFO

Article history:

Received 10 December 2015
Received in revised form

5 May 2016

Accepted 13 June 2016

Keywords:

Cancer detection

Pattern detection and classification
Run-time systems

Human cells

Solid-state micropores/nanopores

ABSTRACT

Micro- and nanoscale systems have provided means to detect biological targets, such as
DNA, proteins, and human cells, at ultrahigh sensitivity. However, these devices suffer from
noise in the raw data, which continues to be significant as newer and devices that are more
sensitive produce an increasing amount of data that needs to be analyzed. An important
dimension that is often discounted in these systems is the ability to quickly process the
measured data for an instant feedback. Realizing and developing algorithms for the accu-
rate detection and classification of biological targets in realtime is vital. Toward this end,
we describe a supervised machine-learning approach that records single cell events (pulses),
computes useful pulse features, and classifies the future patterns into their respective types,
such as cancerous/non-cancerous cells based on the training data. The approach detects
cells with an accuracy of 70% from the raw data followed by an accurate classification when
larger training sets are employed. The parallel implementation of the algorithm on graph-
ics processing unit (GPU) demonstrates a speedup of three to four folds as compared to a
serial implementation on an Intel Core i7 processor. This incredibly efficient GPU system
is an effort to streamline the analysis of pulse data in an academic setting. This paper pres-
ents for the first time ever, a non-commercial technique using a GPU system for realtime
analysis, paired with biological cluster targeting analysis.

© 2016 Elsevier Ireland Ltd. All rights reserved.

* Corresponding author. Department of Electrical Engineering, Department of Bioengineering, University of Texas at Arlington, USA; De-
partment of Urology, University of Texas Southwestern Medical Center at Dallas, USA. Tel.: +1 817 272 0228; fax: +1 817 272 7458.
E-mail address: smigbal@uta.edu (S.M. Igbal).

http://dx.doi.org/10.1016/j.cmpb.2016.06.001

0169-2607/© 2016 Elsevier Ireland Ltd. All rights reserved.

mailto:smiqbal@uta.edu
http://www.intl.elsevierhealth.com/journals/cmpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2016.06.001&domain=pdf

54 COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 134 (2016) 53-67

1. Introduction

Diseases such as cancer can be fully cured, if detected and treated
at early stages. The traditional methods like magnetic reso-
nance imaging (MRI) and cytology are intrusive and are not done
as part of screening for cancer. The current methods cannot
decode the type of cancer in a sample, such as liver cancer or
a brain tumor. However, nanoscale biotech devices, for in-
stance nanopores [1,2] and micropores [3,4] enable the
translocation of biological targets, such as DNA and human cells
in a biological assay at finer granularity. The Coulter counter
was patented to detect small particles using resistive-pulse
sensing with microscopic tubes, and as the analytes pass through
the microchannels, dips in the electrical current are recorded
[5-7]. This is the basis of electrical detection in micropores and
nanopores. Nanopores provide the ability to detect one mol-
ecule at a time [8-17] and the ability to separate individual
polymers [18-22]. However, nanometer-scale pores have pre-
viously had limitations including, fluctuation in pore currents
[23,24], limited residence time of the molecule in the nanopore,
nanopore clogging, and poor biomarker selectivity [25,26].

Various computational methods are used to analyze the data
attained from nanometer-scale devices, and significant work
is focused on the applications of supervised machine-learning
algorithms [8,27-36] in order to classify important patterns in
gene expression data [37-40]. Simple threshold based on peak-
detection algorithms can detect useful patterns in the raw data
emerging from ECG and mass spectroscopy [41-43]. A thresh-
old is based on local minimum/maximum, mean, standard
deviation, energy or entropy [44-46]. These strategies moti-
vate the design of machine learning approaches for the effective
detection and classification of biological targets in the raw data
collected from bio-nano sensors.

Nanopores have applications such as rapid detection and
characterization of molecules, while micropores are widely used
for separating cells [47]. The sensors in this paper are minus-
cule channels made in thin silicon membranes. Their output
is a current signal that is measured in micro- and nano-
amperes. Research shows that cancer cells are softer and
deform more readily than their healthy counterparts because
of their elastic behavior [48]. Such behavior of diseased and
healthy cells is recorded as varying patterns (pulses) in the
output signal when passed through these devices [49]. The
pulses occur at different scales and amplitudes due to the
varying size and physical properties of human cells—stiffness
and viscosity. Nevertheless, the data collected from such sensors
suffer from a large amount of raw data riddled with sensor ar-
tifacts. In situ translocation of a characteristic biological assay
(0.5 milliliter of a blood sample) results in 10 GB of raw data.
The commercial software tools used for the analysis of raw data
are limited to smaller datasets, and even a well-trained tech-
nician has to spend innumerable hours to process and analyze
the data from a simple biological assay. The ability to address
an increasing amount of raw data arising from bio-nano devices
lies in machine-learning approaches for an effective detec-
tion and classification of biological targets in order to
accomplish high-quality decision making.

Originally aimed for gaming, graphics processing units (GPUs)
have evolved as accelerators into a gamut of compute-intensive

scientific applications including bioinformatics and biomedi-
cal signal processing [50-68]. The GPU is what translates binary
data from the central processing unit (CPU) and converts it into
a picture. The tiny dots of an image displayed on a monitor
are called pixels. The GPU decides how to use the pixels on a
monitor to create an image to reflect the binary data sent to
the system. These highly parallel architectures are becoming
pervasive toward embarrassingly parallel applications due to
their massively parallel architectures. GPUs host clustered cores
called streaming processors (SPs), which are further grouped
into streaming multiprocessors (SMs). There are varied memory
spaces available that range from slower off-chip global memory
to the faster on-chip shared memory. On-chip shared memory
is faster than off-chip memory, but typically smaller. GPUs are
good at doing many tasks at the same time. Programmers op-
timize memory accesses to global memory either by coalescing
memory accesses to global memory or by exploiting the shared
memory to reduce the off-chip memory overhead. In paral-
lel, the k-nearest neighbor algorithm is used to analyze the data.
This technique, in particular, is used because it is a simple
analysis tool. However, it is also very effective in this experi-
ment as it delivers results and the necessary classification
required for these studies.

This paper describes a novel system-level design that detects
pulses from the collected raw data of solid-state micropores,
computes useful features of the detected pulses, and finally,
classifies unknown samples based on the learned knowl-
edge. The results can be readily used by physicians/scientists
to infer useful information for disease diagnosis.

The approach to create a robust and real-time data analy-
sis system included:

e First, a moving-average filtering technique was used to detect
pulses from the raw data that stemmed from the dis-
eased and healthy human cells.

Important features including width, amplitude, mean, stan-
dard deviation, falling slope and rising slope of each pulse, and
their statistical significance were computed.

This enabled instant and reliable classification with the use
of k-nearest neighbor technique based on the distinguish-
ing features of the detected pulses.

Finally, parallel k-nearest neighbor algorithm was imple-
mented on GPU for biological target cluster detection in order
to improve the overall performance of the system.

The implementation of the algorithms for detecting and clas-
sifying biological targets from the raw data is described first.
The GPU architecture and programming model, as well as the
design of the classification algorithms, system components,
and experimental setup are discussed in Section 2. Section 3
elaborates the results. Finally, summary and future direc-
tions are concluded in Section 4.

2. Methods and experimental setup
2.1. System overview

The high-level detail of the system modules is provided in
Fig. 1. The system is composed of several software compo-

COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 134 (2016) 53-67 55

Fig. 1 - The system consists of five components (a-e). The data pre-processor fetches and formats the raw data, the pulse-
detector detects pulses in them, and the feature-extractor computes features of the recorded pulse. The data are transferred
to the GPU for parallel classification on the CUDA threads. GPU returns the results back to the CPU for visualization.

nents, including a data pre-processor, pulse-detector, feature-
extractor, pulse-classifier, and visualization. The pre-processor
component converts raw data into the appropriate format for
efficient processing. Subsequently, the pulse-detector compo-
nent detects pulses in the pre-processed data. The feature-
extractor component computes important pulse features
followed by the pulse-classifier that classifies the detected
pulses into their respective groups based on their distinguish-
ing features. Finally, the visualization module, which is
extensively used in biomedical applications, produces 3D scatter
plots.

2.2. GPU architecture and programming model

The programmers can harness the underlying massive paral-
lel architecture of the GPUs through parallel programming tools.
Nvidia has designed Compute Unified Device Architecture
(CUDA) [69] that is used in most of the Nvidia GPUs, includ-
ing Fermi [70] and Kepler [71,72]. The CUDA enables
programmers to launch a compute-intensive kernel on GPU and
harness a massive amount of computational power for the
written programs to determine color, texture, and lighting of
each pixel on the screen. Furthermore, CUDA provides abstrac-
tions to implement parallelism from coarser to finer granularity,
in addition to the task parallelism. CUDA follows Single Program
Multiple Data (SPMD) programming style. This enables pro-
grammers to launch compute- and data-parallel kernels onto
GPU. CUDA thread is the smallest unit of computation on a
typical GPU. To run very efficiently on a GPU, there needs to
be many hundreds of threads; the more threads, the better.
The CUDA is well known for its impressive number crunch-
ing and handling of large datasets. A kernel is primarily
composed of a grid of CUDA threads that is organized into
warps, which are further combined into blocks and alto-
gether the blocks form a grid. The threads would all be executing

the same function but with different datasets. The execution
configuration for a given thread launch ranges from 64 to 512
threads per block. Threads within a block have access to the
common shared memory, which is otherwise not shared across
blocks. If needed, threads within a block can also perform barrier
synchronization [50].

2.3. GPU-based machine-learning algorithm (k-nearest
neighbor)

This algorithm is primarily organized into three steps. Ini-
tially, the Euclidean distance between each test sample to every
training sample is calculated, which yields an n x m matrix,
where n is the total number of test samples, and m is the entire
number of training samples. Next, all the training samples are
sorted with respect to each test sample in order to achieve a
row-wise sorted matrix. Finally, the test sample is assigned using
a class-based approach on the maximum proportion in a set
of k selected training samples [73]. These steps are shown in
Fig. 2, separated by synchronization barriers that guarantee the
completion of previous steps before proceeding to the next step.
In the following, we present mathematical formulation of the
aforementioned steps.

2.4. Mathematical formula

The mathematical calculation of the aforementioned steps is
done as follows:

2.4.1. Euclidean distance
Given two pointsi=(iy, iy, . . ., In) and j = (j, ja, - -
Euclidean distance is given by:

. Jn), the 3-space

Dy =Dji = \[(ir = o)’ + (i = Jo) + ...+ (i = Ju)" | (1)

56 COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 134 (2016) 53-67

Fig. 2 - Block diagram of k-nearest neighbor algorithm. The first step finds the Euclidean distance from all test samples to
the training samples, and then it is synchronized. The next step sorts the distances row-wise such that every test sample
gets training samples to it in ascending order, with the closest first, and it is synchronized again. Finally, k training samples
are selected from each set and based on the maximum proportion of class; the test sample is then synchronized and
classified to that class. This algorithm is repeated for threads 1, 2 and so on.

Here, i and j are the indices of the samples in matrix A and
B that corresponds to test and training sets, respectively. The
goal was to compute distance from each sample in test (vertex)
to every sample in the training (edge) set, i.e., test (0, 1. ..n),
and training (0, 1. . . m). This evolved into a fully connected bi-
partite graph [41]. The algorithmic complexity was O(A|*B|),
where |A| and |B| were the cardinality of matrix A and B, i.e.,
n and m, respectively, and the running time was O(mxn).

To achieve the task of distance computation in parallel,
the workload was distributed among threads such that each
thread calculated one of the nxm distances. The indices per
test and training samples were computed as: testy = thread,;/m,
and trainingy = thread,,%m where thready =(0,1,...,nxm) in
order to make sure that the distance from each test sample
to every training sample was computed—employing per thread
per distance computation. Using 3D, i.e., width, amplitude and
hybrid feature, the Euclidean distance in 3D space between i
test sample (test) and j* training sample (training;) was given
by:

[(testi -width — training; - width)”
D; = + (test; - amplitude — training; - amph'tude)2 2)
+ (test; - hybrid — training; - hybrid)z}

2.4.2. Sorting distance matrix

Once the distances were computed from each test sample to
every training sample, an n x m distance matrix was achieved,
such that d; in the distance matrix was the distance between
i test sample to the j* training sample as shown below:

dll, d12/ dlm,
d ” d ” .. dm/l
e 3)

" " a
nl n2 nm

Each row was sorted in the ascending order with the closest
training samples d; next to its respective test sample i, and
subsequently, the farthest training sample d;, at the end of
the row, as given below.

dll dlZ e dlm
Dij — d?l d22 e dZm (4)
dnl dle dvlm

2.4.3. Decision in k neighborhood
Finally, first k training samples were selected for each test
sample in order to reduce the search space, and to classify the

COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 134 (2016) 53-67 57

test sample based on the maximum participation of training
samples from a particular class.

dyy dyp - dy

o ©
Gy dpp - due
pTOp11 pTOpn proplc

0
Propn1 PTOPn2 DT0Pnc

The computed proportions from all participating classes
were used to compute the maximum proportion, such that for
each test sample, max¢,{prop;}V;. The test sample was as-
signed with the color of the class that was occurring with the
largest proportion in its k neighborhood.

2.5. System components

The system comprised of a data pre-processor to format the
raw data; the pulse-detector to detect pulses in the format-
ted data; the feature-extractor to compute useful features of
the detected pulses followed by the pulse-classifier that clas-
sified the pulses based on their features; and finally, the
visualization module to analyze the results as scatter plots.

2.5.1. Data pre-processor

The acquired raw data was composed of current values in mi-
croamperes sampled at a few microseconds apart with a
micropore-based electrical measurement setup. The data pre-
processor efficiently read data from the storage device into the
system. The acquired raw data was further converted into in-
tegers instead of floating-point values for efficient processing
and to avoid round-off errors. It was then ready for the pulse-
detector as shown with labels (a) and (b) in Fig. 1.

Double buffering [74] was used in the system to overlap the
reading latency from the slower storage device with the com-
putation [68]. Such configuration used two buffers and two
threads, that is, the producer and consumer. The producer
fetched data from the storage, while the consumer processed
the data in the buffer in parallel. While the producer re-
ceived data chunk k+1 into one buffer at time t+1, the consumer
was processing data chunk k in another buffer at time t+1 in
which the producer at time t received the data. This resulted
in a sampling speed 1.6 times faster than the naive imple-
mentation where the data were first collected into the main
memory from the storage device, and then computed. The data
were transferred to the pulse-detector module for the detec-
tion of cells.

2.5.2. Pulse-detector

This module detected the translocation patterns of red blood
cells (RBCs), white blood cells (WBCs), and cancer cells in the
form of pulses passed through a micropore, as shown in Fig. 1(c).
The technique used by the detector was based on the moving-
average technique. This technique worked on the pre-processed
integer data and avoided pre-processing steps like smooth-

ing, and thus, eliminated subjectivity to some extent. The size
of sampling window was critical to use the moving-average fil-
tering. Increasing the size of the sampling window increased
smoothing of the target data; however, it missed the useful
pulses (false negatives) that were smaller. On the other hand,
decreasing the size of the sampling window resulted in limited
smoothing but detected noisy pulses as useful pulses (false posi-
tives). Averages of the sampling window were computed further
to compare subsequent data samples to it. In case the next data
sample was smaller than the computed average, the sample
was recorded as candidate pulse. Finally, the subsequent data
samples that were less than the threshold were recorded only
as a pulse if the number of these samples were within the ac-
ceptable range as explained previously [38].

Different threshold values resulted in different number of
detected cell types. If the threshold was kept too close to the
baseline, large numbers of cells were detected. In contrast, if
the threshold was away from the baseline, fewer cells of each
type were detected. Smaller pulses constituting noisy pulses
(false positives) were detected in addition to the actual pulses
when threshold was closer to the baseline. Unfortunately, the
number of false positives was large in the case of RBCs due
to their smaller dimensions—closely resembling to the actual
pulses, which made it challenging to discriminate these from
the real pulses. However, in case of cancer cells, due to their
large dimensions, the discrimination from noisy pulses was
significant and therefore very convenient for the threshold de-
tector. Conversely, when the threshold shifted away from the
baseline, no noisy pulses were detected; however, it missed
useful pulses (false-negative) due to their smaller amplitude.
False negatives were frequent in the case of RBCs due to smaller
sized pulses, and rare in the case of cancer cells due to their
significantly larger dimensions. The detected pulses from dif-
ferent cell types were delivered to the feature extractor module
to compute pulse features.

2.5.3. Feature extractor

This module took input from the pulse-detector as shown in
Fig. 1(c). Input included the detected pulses in the data. Feature-
extractor computed the important features of the detected
pulses, such as width, amplitude, slopes, and statistics, which
were then used by the next module on GPU for further pattern
classification as shown in Fig. 1(d). The pulse width and am-
plitude alone were insufficient to visualize the clusters from
different cell types due to the overlap seen in 2D scatter plots.
Therefore, features pertaining to the morphology (width, am-
plitude), geometry (falling slope and rising slope) as well as
statistics (mean and standard deviation) per pulse were com-
puted. Statistical Feature, such as the average of mean and
standard deviation of each pulse were also computed to fa-
cilitate visualization in 3D.

When the current signal fell below the given threshold of
baseline current and reverted to its original level, all the current
values (p;, p-... p») Were included in this dip to form a pulse.
The duration between the start of the pulse and end of the pulse
was the pulse width (tx - t;), where t;, t, . tx were the corre-
sponding time instances at which the pulse current values were
sampled. However, the pulse amplitude was the minimum value
among the recorded values of the pulse, i.e., Pmin = min;_ k{p;}.
Rising Slope was the measure of steepness of the pulse, pun

58 COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 134 (2016) 53-67

to Py, ie., My, = w However, Falling Slope measured how
k — ‘min
abruptly the pulse fell toward its minimum and was defined
as Mey = M The case for the numerator becoming zero
min — Y
(very rare) was also taken care of, so that the system did not
fall into a halted state. Consequently, the system did not record

such event as a pulse. The Mean was simply the average of the

k
recorded values per pulse, y = %, and the Standard Devia-

k 2
tion per pulse was given by ¢ _ V2 (P~ 1) .The Hybrid Feature
k

of a pulse was computed as the average of mean and stan-

u+s
-
The above features were further used not only to visual-

ize the natural clusters of different cell types, but also to
separate these out with the least amount of overlap in them.
The rising and falling edges parameters were the least useful
feature. However, pulse width, amplitude, and mean param-
eters were the best features to discriminate the clusters using
3D scatter plots, in addition to the width, amplitude and stan-
dard deviation. Usefulness was determined by the
differentiation between WBCs and cancer cells. Unfortu-
nately, the scatter plots still resulted in 50% overlap between
WBC clusters and cancer clusters. The ultimate goal was to
minimize this overlap as much as possible. However, with little
more visual inspection width, amplitude, and statistical feature
were found to completely remove the overlap between WBC
and cancer clusters.

dard deviation, i.e.,

2.5.4. Pulse-classifier

Once the features for each pulse were computed, these were
fed to the pulse classifier to classify the pulses into their re-
spective clusters. The pulse classifier used k-nearest neighbor
machine-learning technique to detect cancer clusters and to
deliver results to the visualization module as shown in Fig. 1(e).

The k-nearest neighbor grouped the overall data into the
training and testing samples, and based on the training samples,
the test samples were classified. The pulse-classifier could be
executed either on the CPU or on the GPU, as selected by the
user. The GPU used multiple threads in order to run machine-
learning algorithm in parallel, as explained below. The test
samples (n) were classified using k-nearest neighbor classifi-
cation technique based on different percentages of training
samples (m). Generally, a larger proportion of training samples
resulted in better classification of the test samples.

To compute each Euclidean distance in parallel, threads
equal to nxm were launched. However, the amount of train-
ing samples and the remaining test samples impacted the total
amount of threads to compute the Euclidean distance. That is,
the total number of threads launched could be at least nx1,
or 1xm when the proportion of training samples was huge
(n>>1) and vice versa. The maximum number of threads that
could be deployed was nxm, when 50% of data was used as
training samples. The 50% proportion required approxi-
mately 130x131 = 17161 threads in our case, accomplished by
67 blocks of 256 threads each. The output of the Euclidean-
distance kernel was the distance-matrix that contained test
samples as rows, and training samples as columns. This

distance-matrix was fed to the sorting kernel in order to sort
the matrix row-wise, i.e., to achieve sorted training samples
in ascending order per test sample based on its distance from
that test sample. Finally, the sorted distance-matrix was input
to the decision-making kernel. This kernel selected the first k
sorted training samples (m;, m,, . . ., my) for each test sample
and computed the proportions of each class (prop, prop,, . . .,
propy) in them. The maximum proportion out of these was cal-
culated such that: propm.. = max;, k{prop;}, and the test
sample was then assigned to the class i that had the largest
proportion in its k neighborhood.

2.5.5. Visualization

Visualization presents statistical information effectively in ab-
stract form [75]. The results were organized into 3D scatter plots
for pattern analysis of the biological targets. By visual inspec-
tion, width, amplitude, mean, and standard deviation were found
the best for discriminating the clusters of RBC, WBC, and cancer.
However, humans can better visualize up to three dimen-
sions, and the task becomes tedious beyond three dimensions
due to the increased number of features leading to the curse
of dimensionality. Therefore, mean and standard deviation were
combined as a statistical feature to be used as a third dimen-
sional feature to the width and amplitude, and was found to
completely separate out the cancer cells from WBCs and RBCs.

2.6. Experimental setup

The experimental setup consisted of an Intel Core i7 for a GPU
and CPU setup. CUDA, pthreads, and written code were in-
volved in analyzing the data that were attained by running the
biological assays through the solid-state micropore.

2.6.1. Corei7-based GPU setup

The experimental setup consisted of an Intel Core i7-based
compute node with NVIDIA Quadro FX 580 and 6 GB of main
memory installed on it. The CPU had 4 cores clocked at 1.6 GHz.
The GPU has 512 MB global memory, 64 KB constant memory,
16 KB per block shared memory and 8K registers. Moreover, the
GPU contained 32 cores, i.e., 4 multiprocessors (MP), with 8 cores
per MP, clocked at 1.12 GHz. The system used 64 bit Linux
Ubuntu 10.04.4 LTS, kernel version 2.6.32.

2.6.2. CUDA

With the given hardware and CUDA capability 1.1, the execu-
tion configuration could have a maximum of 512 threads per
block. In order to achieve sorting required by k-nearest neigh-
bor technique, we used CUDA SDK sorting. Quick sort
implementation was used for CPU-based counter execution [76].
Built-in CUDA timer and event functions, i.e., cudaEventCreate(),
cudaEventRecord() and cudaEventSynchronize() were used to
measure the execution of kernel functions within the machine-
learning algorithm. These routines ensured that previously
issued CUDA events were recorded on the GPU. Finally, CUDA
syncthreads() was used for synchronization across all thread
blocks.

2.6.3. Pthreads
Pthread library was employed to implement double buffering.
During our experiments, buffers of size 200,000 samples were

COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 134 (2016) 53-67 59

found optimal for our problem [77]. The integer size on 64 bit
Intel machine running Linux OS with gcc complier was 4 bytes.
The time and current values in integers per sample contrib-
uted to 8 bytes per sample, and overall results were limited
to 1.6 MB per buffer.

2.6.4. Lines of code

The system was implemented using C and CUDA with 349 lines
of code for moving-average filtering, 53 for feature extrac-
tion, and 600 for k-nearest neighbor algorithm.

2.6.5. Datasets

The system was evaluated using three different biological assays
describing several profiles of RBCs, WBCs and cancer cells. The
data were collected from the micropore experimental setup with
a pore diameter of 12 micrometers [78]. These bio-sets con-
sisted of current values in microamperes sampled at a rate of
2.2 microseconds. The raw data were around 10 GB owing to
360 million current values. After pre-fetching the data into main
memory and pre-processing the raw data into integers, the total
amount of data shrank down to 2.88 GB, resulting in 68% re-
duction of the total acquired raw data. The resulting data could
easily fit in the available 6 GB main memory and therefore
avoided the system to page.

2.6.6. Solid-state micropores

The micropores are an example of bioMEMS devices that can
detect human cells at the finer granularity from a biological
assay (blood samples) and provide efficient, cheaper, and
highly sensitive alternatives. The pore used for experiments
had 12-micrometer radius and was made in 200 nanometer
thin membrane that translocated single human cell at a
given time. In order to achieve maximum throughput, the
flow rate was optimized. Increasing flow rate (such as 20
microliter per minute) missed some of the translocation
events, while decreasing it to 5 microliter per minute reduced
the throughput significantly. An optimal throughput was
achieved at 10 microliter per minute. In addition to that,
sampling frequency of the micropore was an important
factor to determine the desired output. Higher sampling
rates induced lot of noise in the output current from the
micropore and suppressed many translocation events, while
lower sampling rates resulted in a more stable baseline
current with a higher signal to noise ratio, but the system
missed faster translocation events mainly caused by smaller
sized cells, such as RBCs. An optimized sampling rate was
achieved at 2.5 microseconds.

3. Results
3.1. Detection accuracy

Empirically, pulses with a width larger than four samples (ap-
proximately nine microseconds) and amplitude larger than 1000
nanoamperes were recorded in the evaluation. In this imple-
mentation, the moving-average filtering used a sampling
window of 2000 samples to achieve a better detection of pulses.
This reduced the pre-processed data to a total of 261 pulses—
26 RBCs, 208 WBCs, and 27 cancer cells. Furthermore, we
detected cancer cells with an accuracy of 70%.

The standard deviations (noise) of the acquired data from
cancer cells, WBCs and RBCs were found to be 492, 499, 463
nanoamps, respectively. Therefore, cancer cells and WBCs re-
quired the threshold away from the baseline, as compared to
RBCs. The threshold was thus set to 0.036 to detect cancer cells
and WBCs. However, a threshold of 0.026 was chosen for the
precise detection of RBCs, as shown in Fig. 3. The baseline shift
and the follow up of moving average filtering are also shown
in Fig. 3(a). The onsets of the raw data attained are displayed
in Fig. 4(a), (b), and (c) which capture finer details of each re-
markable pulse. Clearly, cancer cell pulses were larger when
compared to WBCs and RBCs. RBC pulses were fluctuating and
unstable as compared to the cancer and WBC pulses. The two
edges emerging out in the RBC pulses led to an insight that
RBCs were clumped together when passed through the
micropore—most probably due to their smaller size [78].

Additionally, the features of the detected pulses such as
pulse-width, pulse-amplitude, mean, standard deviation, falling
slope, and rising slope were computed from the recorded
samples per pulse. The width, amplitude, mean, standard de-
viation, falling slope, and rising slope are graphically defined
in Fig. 3(d). Pulse-width, pulse-amplitude, and the statistical
feature (combined mean and standard deviation) were found
statistically significant features in separating out the clus-
ters, and therefore, were used for further analysis of different
cluster types. The next section shows the statistical signifi-
cance of the distinguishing features.

3.2. Statistical significance of features

It was found that the average pulse amplitude of the cancer
cells was larger than that of WBCs and RBCs as shown in
Table 1. A similar trend was also observed for the average trans-
location time, and statistical feature. However, in the case of
falling slope, it was observed that WBCs’ average was greater
when compared to the cancer cells, and similarly, in the case
of rising slope, a greater average of RBCs was observed than

Table 1 - The average of the features for three types of pulses.

Cell Average pulse amplitude Average translocation time Average of statistical =~ Average of falling Average of
types (microamp) (microseconds) feature (microamp) slope feature rising slope
Cancer 8.7+£39 103.3 £74.9 234+1.1 —497.2 + 180.6 349.9 £138.5
WBCs 27+11 21.7+£79 13.1+0.6 -507.8+£207.3 412.3+158.2
RBCs 23+0.8 20.6+9.1 11.3+0.2 —470.2 +£265.1 359.3+149.3

60 COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 134 (2016) 53-67

(a)

(b)

(c)

(d)

Fig. 3 - Detection results with the black line as moving-average based threshold. Raw data from micropore for (a) cancer cell
translocation with baseline shift, (b) WBC translocation, (c) RBC translocation, (d) Typical pulse showing width, amplitude

(minimum), falling slope and rising slope.

that of cancer cells. Such behavior of slopes, although useful
for biophysical insights, did not make them useful for distin-
guishing the three types of human cells.

3.3. ANOVA of pulse features

A single-factor analysis of variance (ANOVA) was done for the
pulse translocation time (pulse-width), pulse-amplitude, falling
slope, rising slope and statistical features. We found p-value < 0.001
for pulse-width, pulse-amplitude, and statistical feature, and
therefore, these were significantly distinguishing features as com-
pared to the slopes whose p-value > 0.05. Furthermore, the F-test
was done on the features. The F test models the variance between
clusters to the variance within clusters. Greater F values results in
compact clusters and hence more significant feature as com-
pared to the smaller values of F, which means scattered clusters
resulting in overlapped regions. The features are given below in
the order of their significance with the highest F-value for sta-
tistical feature:

Fstatisticalffeatuve > F,, 1 iplitude > F,, it idth > Pv ing—slop > Ffalling—slope

ie.,3290.6 >179.9>129.5>2.9>0.38

3.4. Classification results

The k-nearest neighbor is a supervised machine learning tech-
nique, where the data are first trained by assigning labels to the
samples, followed by the test samples which are classified based
on the training data. The test sample is classified as the class
that has maximum participation in its neighborhood k.

Different proportions of the data including 20%, 50% and
80% were used as training data, and k was kept 5 and 10, as
shown in Figs. 5, 6 and 7. Accurate results were observed for
larger amounts of training data. Furthermore, since the cancer
cluster was already separated out from the other two clus-
ters using a statistical feature, which otherwise overlapped, the
cancer cluster was detected with 100% accuracy in all cases
except for 20% training data and when k = 10, as explained in
the following section.

3.4.1.
k=10
In this case, since the size of the training data was small, there
was not enough information to classify the test data accu-
rately. Given total samples of 261; 20% of RBCs, WBCs and cancer
cells corresponded to 5 RBCs, 42 WBCs, and 5 cancer cells
respectively.

Case with 20% training sample data and k =5 vs.

COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 134 (2016) 53-67 61

(a)

(b)

(c)

Fig. 4 - The onsets of the detection results with the black line as the moving-average based threshold. Three instances for
each category of cells are represented (not to scale): (a) cancer cells, (b) WBCs, and (c) RBCs.

In the case of k =10, only one cancer cell was classified
incorrectly as WBC, as shown in Fig. 5. However, all RBCs were
classified as WBCs, again due to the small size of training data,
which did not capture enough information to allow RBCs to
be classified accurately. Another reason for this misclassification
was the large neighborhood as compared to k =5 (Fig. 5), in
which the proportion of WBCs was always larger, and the de-
cision was in favor of WBCs even though the test point was
actually from RBCs, thus resulting in false positive. Such a
large proportion of WBCs, in case of k=10 points was also
responsible for the misclassification of one cancer cell.

3.4.2.
k=10
In this case, the cancer cluster is classified accurately. However,
half of the input data (detected pulses) were used as
training samples, while the other half were used as test data
(Fig. 6).

For k =5, all RBCs were classified correctly as shown in
Fig. 6(a). However, 25 WBCs were misclassified as RBCs. So there
were 25 false-positives in the RBC cluster, while there were 25
false-negatives in the WBC cluster. In case of k =10, 18 WBCs
were misclassified as RBCs as shown in Fig. 6(b). This showed
that 50% of the training data did not have enough represen-
tation of WBCs to classify these correctly. Furthermore, the
significant overlap between RBCs and WBCs resulted in such
misclassification.

Case with 50% training sample data and k =5 vs.

3.4.3.
k=10
Increasing the size of the training data reduced the
misclassification rate of WBCs. Only 2 WBCs were detected in-
correctly as RBCs in case of k =5 as shown in Fig. 7(a). However,
in the case of k = 10, it was able to classify the remaining 20%
test data accurately for all types of cells (Fig. 7(b)).

Case for 80% training sample data and k =5 vs.

3.5. Accuracy of classification

The accuracy measured using a contingency table for 50% and
80% of training data is shown in Table 2. The matrix captures
the actual number of different cell types, and the predicted
number of cells after classification, for k=5 and k = 10, respec-
tively. The total human cells were 261, out of which 26 were
RBCs, 208 were WBCs, and 27 were cancer cells. With 80% of
training samples from each cell type, the 20% of the test data
were actually 6 RBCs, 42 WBCs, and 6 cancer cells. However, 2
false-positives resulted in the case of RBCs—stemming from
the misclassification of WBCs as RBCs. Furthermore, in the case
of 50% training samples, the number of false-negatives in WBCs
was 25 and 18, for a neighborhood size (k) of 5, and 10, respec-
tively, which were miss-classified as RBCs.

3.6. Performance results

We now present the performance of the classification algo-
rithms on both CPU and GPU. The Euclidean distance

62 COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 134 (2016) 53-67

(a)

(b)

Fig. 5 - The results of k-nearest neighbor algorithm with training sample of 20% and (a) k =5 and (b) k = 10.

computation resulted in computations three times faster on
the GPU than the CPU (Table 3). The sorting was also almost
four times faster on the GPU. The sorting algorithm was based
on the CUDA SDK sorting networks, which used a bitonic sorter
to construct a network using a parallel algorithm. The input
data to the sorting algorithm was considered a batch and was
divided into fixed size arrays such that the array-length was
of size 2". In our case, the array-length and the batch-size re-
ferred to the number of the training, and test samples,
respectively. In order to tailor the data accordingly, 256 data
samples were used instead of 261, by removing 5 WBCs, while
not changing the amount of RBCs and cancer cells. Reducing
the number of WBCs, however, did not affect the classifica-
tion of cancer cells. The sorting algorithm was tested with 25%,
50%, and 75% of training data that pertained to 64, 128, and

192 of array-length, respectively. In case of 75%, training data
were increased to 256 samples from 192 samples by padding
zeros in order to make it an integral power of 2. The data were
sorted in ascending order after the padded zeros, which were
grouped together at the beginning of the sorted array. The
decision-making step was then implemented only on the CPU
due to branch divergence, which resulted in performance deg-
radation on the GPU.

4, Discussion

The speedup of 3-4X achieved from machine learning algo-
rithm on GPU was fascinating. However, the experiments were

COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 134 (2016) 53-67 63

(@)

Fig. 6 - The results of k-nearest neighbor algorithm with training sample of 50% and (a) k =5 and (b) k = 10.

performed on a powerful Intel Core i7-based CPU coupled with
low-end Quadro-based GPU with limited memory and number
of cores as compared to the state-of-the-art server-class GPUs,
such as Fermi [70] and Kepler [72,79,80]. Furthermore, the de-
tected pulses were just a few kilobytes of the acquired
measurements of a typical blood sample and were signifi-
cantly smaller as compared to the GPU memory, which was a
value of a few hundreds of megabytes. Such a small amount
of data did not significantly populate the global memory of GPU
hardware, and thus, the overhead of data transfer was greater
than the computation itself. Significant working set that fit in
GPU memory will result in even better speedup.

Detection of diseases, in particular, cancer is an extremely
time-sensitive matter. State of the art technologies and re-
search have heavily focused on the early detection of cancer
to quickly and efficiently locate the disease, and limit its effects.
To aid this cause, this technique is able to increase the

speed of data analysis by three to four folds for detection of
cancer cells, which in turn allows an earlier diagnosis and better
outcomes for the therapy. This technique is efficient, cost-
effective, and does not require any state of the art technology.
It is simple and easy to set-up.

The unprecedented amount of data generated from the
biosensors is increasing to capture the biophysical character-
istics at ever-finer granularities. Future micro/nanodevice
designs are expected to include arrays to measure behaviors
at extremely high resolution, and at sampling intervals of only
a few nanoseconds. Therefore, this is more daunting to find
useful insights into such data in real time. This inspires the
need for advanced resource management mechanisms, in-
cluding advanced I/O techniques, such as pre-fetching and
multiple buffering coupled with advanced GPU-based setup.
Kepler-based GPU setup with a significantly larger number of
cores, an improved bandwidth between the cores, larger on-

64 COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 134 (2016) 53-67

(a)

(b)

Fig. 7 - The results of k-nearest neighbor algorithm with training sample of 80% and (a) k =5 and (b) k = 10.

chip memory, and more control than its ancestors seems
promising in accelerating such computations. Nanoscale devices
including nanopores can be the next step in this integrated
machine learning technique. Additionally, the use of ad-
vanced, though compute-intensive machine-learning
algorithms, such as artificial neural networks, and support-
vector machines, can play a significant role to unveil the type
of cancer in the target tissue.

5. Conclusions

An approach is presented to detect and classify pulses in the
raw data collected from healthy and diseased cells using a
machine-learning technique. The useful features were com-
puted from the detected pulses, which were used to classify
cancer clusters from the WBC and RBC clusters. The system

detected cancer cells with an accuracy of 70% from a typical
biological assay, which were then completely separated out from
other cell clusters using their features. In addition to that, all
cell types were accurately classified when training data size
was increased to 80%. Using a GPU for the classification of
cancer cells resulted in computations four times faster than
those using a CPU.

Statistical feature computed as the average of mean and
standard deviation for each pulse was used as a third metric,
in addition to the pulse width and amplitude. These features
completely separated out the cancer cell cluster from those of
RBCs and WBCs. It, however, left the latter two clusters over-
lapped. This helped in labeling and detecting cancer clusters
from mixed cell types with different proportions of training
samples. The k-nearest neighbor approach detected all clus-
ters with high accuracy when the right proportion of training
samples and the right choice of the neighborhood size were

65

COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 134 (2016) 53-67

Table 2 - Accuracy of classification for 80% and 50% training sample sizes.

Training sample = 80%

k=5 k=10
Actual class Predicted class
RBCs WBCs Cancer RBCs WBCs Cancer
RBCs 6 2 0 6 0 0
WBCs 0 40 0 0 42 0
Cancer 0 0 6 0 0 6
Training sample = 50%
k=5 k=10
Actual class Predicted class
RBCs WBCs Cancer RBCs WBCs Cancer
RBCs 13 25 0 13 18 0
WBCs 0 79 0 0 86 0
Cancer 0 0 14 0 0 14

Table 3 — The performance analysis of k-nearest neighbor algorithms on CPU and GPU. Execution time for the main steps

of k-nn algorithm is shown.

GPU-kernel execution
time (msec)
k =5,10

k-nn Algorithm

CPU time (msec)
k=5,10
(Single thread execution)

euclid_dist sorting with_keys

euclid_dist sorting with_keys decision_making

Training data = 25% 0.1427 0.227
Test data = 75%
Training data = 50% 0.217 0.275
Test data =50%
Train data = 75% 0.165 0.332

Test data =25%

0.526 1.05 0.245
0.525 1.06 0.18
0.53 1.43 0.134

chosen. This work lays the foundation for automated detec-
tion and classification of biological targets that can further be
used to infer useful information at even smaller scales.
Nanopore data can be analyzed for disease diagnosis by using
the same fundamental methods as described in this work.

Acknowledgments

This work is based upon the projects supported by the National
Science Foundation under Grants CNS-1119085, CNS-1119742,
CNS-1016793, CNS-1016408, CNS-1405697, and CNS-1422788. SMI
was supported by National Science Foundation grant ECCS-
1201878.The authors wish to thank Henry Monti and Aleksandr
Khasymski for their constructive feedback on this work.

The authors would like to thank Dr. Waseem Asghar for
help with data analysis. The chip fabrication was carried out
at the Nanotechnology Research Center, University of Texas
at Arlington, Texas. The cancer cells were shared by the lab
of Dr. Robert Bachoo of the University of Texas Southwestern
Medical Center at Dallas, Texas. These were obtained from
consenting patients as per the approved Institutional Review
Board (IRB).

REFERENCES

[1] W. Asghar, A. Ilyas, J. Billo, S. Igbal, Shrinking of solid-state
nanopores by direct thermal heating, Nanoscale Res. Lett. 6
(2011) 372.

[2] S.M. Igbal, D. Akin, R. Bashir, Solid-state nanopore channels
with DNA selectivity, Nat. Nanotechnol. 2 (2007) 243-248.

[3] W. Asghar, Y. Wan, A. Ilyas, R. Bachoo, Y.-T. Kim, S.M. Igbal,
Electrical fingerprinting, 3D profiling and detection of tumor
cells with solid-state micropores, Lab Chip 12 (2012) 2345-
2352.

[4] A.Ilyas, W. Asghar, Y.-T. Kim, S.M. Igbal, Parallel recognition
of cancer cells using an addressable array of solid-state
micropores, Biosens. Bioelectron. 62 (2014) 343-349.

[5] W.H. Coulter, High speed automatic blood cell counter and
cell size analyzer, Proc. Natl. Electron. Conf. 12 (1956).

[6] Wallace H. Coulter, Means for counting particles suspended
in a fluid. U.S. Patent 2,656,508, issued October 20, 1953.

[7] S.M. Bezrukov, J.J. Kasianowicz, Current noise reveals
protonation kinetics and number of ionizable sites in
an open protein ion channel, Phys. Rev. Lett. 70 (15) (1993)
2352.

[8] A. Balijepalli, J. Ettedgui, A.T. Cornio, J.W.F. Robertson, K.P.
Cheung, J.J. Kasianowicz, et al., Quantifying short-lived
events in multistate ionic current measurements, ACS Nano
8 (2014) 1547-1553.

http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0010
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0010
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0010
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0015
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0015
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0020
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0020
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0020
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0020
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0025
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0025
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0025
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0030
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0030
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0035
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0035
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0040
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0040
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0040
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0040
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0045
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0045
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0045
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0045

66 COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 134 (2016) 53-67

[9] S. Howorka, Z. Siwy, Nanopore analytics: sensing of single
molecules, Chem. Soc. Rev. 38 (8) (2009) 2360-2384.

[10] JJ. Kasianowicz,].W. Robertson, E.R. Chan, J.E. Reiner, V.M.
Stanford, Nanoscopic porous sensors, Annu. Rev. Anal.
Chem. (Palo Alto Calif.) 1 (2008) 737-766.

[11] A. Piruska, M. Gong, J.V. Sweedler, PW. Bohn, Nanofluidics in
chemical analysis, Chem. Soc. Rev. 39 (3) (2010) 1060-1072.

[12] JJ. Kasianowicz, E. Brandin, D. Branton, D.W. Deamer,
Characterization of individual polynucleotide molecules
using a membrane channel, Proc. Nat. Acad. Sci. 93 (24)
(1996) 13770-13773.

[13] S. Kumar, C. Tao, M. Chien, B. Hellner, A. Balijepalli,] W.F.
Robertson, et al., PEG-labeled nucleotides and nanopore
detection for single molecule DNA sequencing by synthesis,
Sci. Rep. 2 (2012).

[14] WJ. Lan, D.A. Holden, B. Zhang, H.S. White, Nanoparticle
transport in conical-shaped nanopores, Anal. Chem. 83 (10)
(2011) 3840-3847.

[15] T.Ito, L. Sun, R.M. Crooks, Simultaneous determination of
the size and surface charge of individual nanoparticles
using a carbon nanotube-based coulter counter, Anal. Chem.
75 (10) (2003) 2399-2406.

[16] O.A. Saleh, L.L. Sohn, Quantitative sensing of nanoscale
colloids using a microchip coulter counter, Rev. Sci. Instrum.
72 (12) (2001) 4449-4451.

[17] D. Pedone, M. Firnkes, U. Rant, Data analysis of translocation
events in nanopore experiments, Anal. Chem. 81 (23) (2009)
9689-9694.

[18] J.W.F. Robertson, C.G. Rodrigues, V.M. Stanford, K.A.
Rubinson, O.V. Krasilnikov, J.J. Kasianowicz, Single-molecule
mass spectrometry in solution using a solitary nanopore,
Proc. Nat. Acad. Sci. 104 (20) (2007) 8207-8211.

[19] J.E. Reiner,].J. Kasianowicz, B.J. Nablo, J.W.F. Robertson,
Theory for polymer analysis using nanopore-based single-
molecule mass spectrometry, Proc. Nat. Acad. Sci. 107 (27)
(2010) 12080-12085.

[20] A. Balijepalli, J.W. Robertson, J.E. Reiner, J.J. Kasianowicz, R.W.
Pastor, Theory of polymer-nanopore interactions refined
using molecular dynamics simulations, J. Am. Chem. Soc.
135 (18) (2013) 7064-7072.

[21] J. Li, M. Gershow, D. Stein, E. Brandin, J.A. Golovchenko, DNA
molecules and configurations in a solid-state nanopore
microscope, Nat. Mater. 2 (9) (2003) 611-615.

[22] R.M. Smeets, U.F. Keyser, N.H. Dekker, C. Dekker, Noise in
solid-state nanopores, Proc. Nat. Acad. Sci. 105 (2) (2008) 417-
421.

[23] J.J. Kasianowicz, S.M. Bezrukov, Protonation dynamics of the
alpha-toxin ion channel from spectral analysis of pH-
dependent current fluctuations, Biophys. J. 69 (1) (1995) 94.

[24] S.M. Bezrukov, I. Vodyanoy, R.A. Brutyan, J.J. Kasianowicz,
Dynamics and free energy of polymers partitioning into a
nanoscale pore, Macromolecules 29 (26) (1996) 8517-8522.

[25] M.A.I. Mahmood, W. Ali, A. Adnan, S.M. Igbal, 3D structural
integrity and interactions of single-stranded protein-binding
DNA in a functionalized nanopore, J. Phys. Chem. B 118 (22)
(2014) 5799-5806.

[26] E.C. Yusko, .M. Johnson, S. Majd, P. Prangkio, R.C. Rollings, J.
Li, et al., Controlling protein translocation through
nanopores with bio-inspired fluid walls, Nat. Nanotechnol. 6
(4) (2011) 253-260.

[27] Y. Huang, S. Magierowski, E. Ghafar-Zadeh, C. Wang, A high-
speed realtime nanopore signal detector. Computational
Intelligence in Bioinformatics and Computational Biology
(CIBCBY), 2015 IEEE Conference on. IEEE, 2015.

[28] C. Raillon, P. Granjon, M. Graf, L.J. Steinbock, and A.
Radenovic, Fast and automatic processing of multi-level
events in nanopore translocation experiments, Nanoscale 4
(16) (2012) 4916-4924.

[29] QUB—Software for single-molecule biophysics. Qub.buffalo.edu.
https://www.qub.buffalo.edu/, 2016 (accessed 30.03.16).

[30] Rhenley/Pyth-Ion. GitHub. https://github.com/rhenley/
Pythlon, 2015 (accessed 30.03.16).

[31] R.Y. Henley, B.A. Ashcroft, I. Farrell, B.S. Cooperman, S.M.
Lindsay, M. Wanunu, Electrophoretic deformation of
individual transfer RNA molecules reveals their identity,
Nano Lett. 16 (2016) 138-144.

[32] X. Zhu, Z. Ghahramani, J. Lafferty, Semi-supervised learning
using Gaussian fields and harmonic functions, Machine
Learning Inernational Workshop then conference, vol. 20,
2003.

[33] G.D. Stormo, T.D. Schneider, L. Gold, A. Ehrenfeuch, Use of
the perceptron algorithm to distinguish translation
initiation sites in E. coli, Nucleic Acids Res. 10 (1982) 2997-
3011.

[34] A.L. Tarca, V.J. Carey, X.W. Chen, R. Romero, S. Draghici,
Machine learning and its applications to biology, PLoS
Comput. Biol. 3 (2007).

[35] J. Weston, C. Leslie, E. le, D. Zhou, A. Elisseeff, W.S. Noble,
Semi-supervised protein classification using cluster kernels,
Bioinformatics 21 (2005) 3241-3247.

[36] C.S. Ong, A. Ben-Hur, S. Sonnenburg, B. Scholkopf, G. Ratsch,
Support vector machines and kernels for computational
biology, PLoS Comput. Biol. 4 (2008).

[37] Q.-H. Ye, Predicting hepatitis B virus-positive metastatic
hepatocellular carcinomas using gene-expression profiling
and supervised machine learning, Nat. Med. 9 (2003) 416—
423.

[38] M.A. Shipp, K.N. Ross, P. Tamayo, A.P. Weng, J.L. Kutok, R.C.
Aguiar, et al., Diffuse large B-cell lymphoma outcome
prediction by gene-expression profiling and supervised
machine learning, Nat. Med. 8 (2002) 68-74.

[39] A.C. Tan, D. Gilbert, Ensemble machine learning on gene
expression data for cancer classification, Appl.
Bioinformatics 2 (2003) 1-9.

[40] A.A. Alizadeh, M.B. Eisen, R.E. Davis, C. Ma, L.S. Lossos, A.
Rosenwald, et al., Distinct type of diffuse large B-cell
lymphoma identified by gene expression profiling, Nature
403 (Nov 2000) 503-511.

[41] W. Zong, T. Heldt, G. Moody, R. Mark, An open-source
algorithm to detect onset of arterial blood pressure pulses,
IEEE Computers in Cardiology, 2003.

[42] B.-U. Kohler, C. Hennig, R. Orglmeister, The principles of
software QRS detection, IEEE Eng. Med. Biol. Mag. 21 (2002)
42-57.

[43] P. Du, W.A. Kibbe, S.M. Lin, Improved peak detection in
mass spectrum by incorporating continuous wavelet
transform-based pattern matching, Bioinformatics 22 (2006)
2059-2065.

[44] G.K. Palshikar, Simple algorithms for peak detection in time-
series, in: Proc. 1st Int. Conf. Advanced Data Analysis,
Business Analytics and Intelligence, 2009.

[45] L. Lamel, L.R. Rabiner, A.E. Rosenberg, J.G. Wilpon, An
improved endpoint detector for isolated word recognition,
IEEE Trans. Acoust. 29 (1981) 777-785.

[46] C.C. Harrell, Y. Choi, L.P. Horne, L.A. Baker, Z.S. Siwy, C.R.
Martin, Resistive-pulse DNA detection with a canonial
nanopore sensor, Am. Chem. Soc. 22 (2006) 10837-10843.

[47] X.S. Ling, Addressable nanopores and micropores including
methods for making and using same. U.S. Patent No.
7,678,562. 16 Mar. 2010.

[48] M. Lekka, P. Laidler, D. Gil, J. Lekki, Z. Stachura, A.Z.
Hrynkiewicz, Elasticity of normal and cancerous human
bladder cells studied by scanning force microscopy, Eur.
Biophys. J. 28 (1999) 312-316.

[49] Y.E. Choi, J.-W. Kwak, J.W. Park, Nanotechnology for early
cancer detection, Sensors (Basel) 10 (2010) 428-455.

http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0050
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0050
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0055
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0055
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0055
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0060
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0060
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0065
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0065
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0065
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0065
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0070
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0070
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0070
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0070
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0075
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0075
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0075
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0080
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0080
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0080
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0080
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0085
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0085
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0085
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0090
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0090
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0090
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0095
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0095
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0095
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0095
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0100
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0100
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0100
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0100
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0105
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0105
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0105
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0105
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0115
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0115
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0115
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0120
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0120
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0120
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0125
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0125
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0125
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0130
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0130
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0130
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0135
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0135
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0135
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0135
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0140
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0140
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0140
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0140
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0145
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0145
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0145
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0145
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0150
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0150
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0150
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0150
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0155
https://www.qub.buffalo.edu/
https://github.com/rhenley/PythIon
https://github.com/rhenley/PythIon
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0165
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0165
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0165
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0165
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0170
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0170
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0170
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0170
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0175
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0175
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0175
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0175
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0180
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0180
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0180
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0185
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0185
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0185
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0190
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0190
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0190
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0195
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0195
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0195
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0195
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0200
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0200
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0200
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0200
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0205
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0205
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0205
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0210
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0210
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0210
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0210
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0215
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0215
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0215
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0220
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0220
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0220
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0225
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0225
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0225
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0225
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0230
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0230
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0230
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0235
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0235
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0235
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0240
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0240
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0240
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0245
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0245
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0245
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0250
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0250
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0250
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0250
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0255
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0255

COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 134 (2016) 53-67 67

[50] J.D. Owens, M. Houston, D. Luebke, S. Green, J.E. Stone, J.C.
Phillips, GPU computing, Proc. IEEE 96 (2008) 879-899.

[51] Y. Cao, D. Patnaik, S. Ponce, J. Archuleta, P. Butler, W. Feng,
et al., Towards chip-on-chip neuroscience: fast mining of
neuronal spike streams using graphics hardware, in
Proceedings of the 7th ACM international conference on
Computing frontiers, New York, NY, USA, 2010, pp. 1-10.

[52] R. Hussong, B. Gregorius, A. Tholey, A. Hildebrandt, Highly
accelerated feature detection in proteomics data sets using
modern graphics processing units, Bioinformatics 25 (2009)
1937-1943.

[53] M.C.S.C. Trapnell, Optimizing data intensive GPGPU
computations for DNA sequence alignment, Parallel
Comput. 35 (2009) 429-440.

[54] J.E. Stone, DJ. Hardy, I.S. Ufimtsev, K. Schulten, GPU-
accelerated molecular modeling coming of age, J. Mol.
Graph. Model. 29 (2010) 116-125.

[55] J.A. Cole, Z. Luthey-Schulten, Whole cell modeling:
from single cells to colonies, Isr. J. Chem. 54 (2014) 1219-
1229.

[56] J.E. Stone, R. McGreevy, B. Isralewitz, K. Schulten, GPU-
accelerated analysis and visualization of large structures
solved by molecular dynamics flexible fitting, Faraday
Discuss. 169 (2014) 265-283.

[57] J.C. Phillips, J.E. Stone, K.L. Vandivort, T.G. Armstrong, J.M.
Wozniak, M. Wilde, et al., Petascale tcl with NAMD, VMD, and
Swift/T, in: Proceedings of the 1st First Workshop for High
Performance Technical Computing in Dynamic Languages,
IEEE Press, 2014, pp. 6-17.

[58] M.J. Hallock, J.E. Stone, E. Roberts, C. Fry, Z. Luthey-Schulten,
Simulation of reaction diffusion processes over biologically
relevant size and time scales using multi-GPU workstations,
Parallel Comput. 40 (2014) 86-99.

[59] W. Shen, D. Wei, W. Xu, X. Zhu, S. Yuan, GPU-based
parallelization for computer simulation of
electrocardiogram, in: Ninth IEEE International Conference
on Computer and Information Technology, CIT 2009, pp. 280-
284.

[60] C.T. Villongco, D.E. Krummen, P. Stark,].H. Omens, A.D.
McCulloch, Patient-specific modeling of ventricular
activation pattern using surface ECG-derived
vectorcardiogram in bundle branch block, Prog. Biophys. Mol.
Biol. 155 (2014) 305-313.

[61] S.S. Stone, J.P. Haldar, S.C. Tsao, W. Hwu, B.P. Sutton, Z.P.
Liang, Accelerating advanced MRI reconstructions on GPUs,
J. Parallel Distrib. Comput. 68 (2008) 1307-1318.

[62] S.Lim, K. Kwon, B.S. Shin, GPU-based interactive
visualization framework for ultrasound datasets, Comput.
Animat. Virtual Worlds 20 (2009) 11-23.

[63] U.C.T.D. Hartley, A. Ruiz, F. Igual, R. Mayo, M. Ujaldon,
Biomedical image analysis on a cooperative cluster of GPUs
and multicores, Proc. ACM ICS, 2008, 2008.

[64] D. Sato, Y. Xie, J.N. Weiss, Z. Qu, A. Garfinkel, A.R. Sanderson,
Acceleration of cardiac tissue simulation with graphic
processing units, Med. Biol. Eng. Comput. 47 (2009) 1011-
1015.

[65] H.E.R.C. Men, X. Jia, S.B. Jiang, Ultrafast treatment plan
optimization for volumetric modulated arc therapy (VMAT),
Med. Phys. 37 (2010) 5787-5791.

[66] T.Y. Huang, Y.W. Tang, S.Y. Ju, Accelerating image
registration of MRI by GPU-based parallel computation,
Magn. Reson. Imaging 9 (2011) 712-716.

[67] Y. Zhuo, X.L. Wu, J.P. Haldar, T. Marin, W. Hwu, Using GPUs to
accelerate advanced MRI reconstruction with field
inhomogeneity compensation, in: GPU Computing Gems,
Emerald Edition, Elsevier, 2011.

[68] A.Hafeez, W. Asghar, M.M. Rafique, S.M. Igbal, A.R. Butt,
GPU-based Real-time Detection and Analysis of Biological
Targets using Solid-state Nanopores, Medical & Biological
Engineering & Computing 50 (6) (2012) 605-615.

[69] Nvidia.com. (2016). Parallel Programming and Computing
Platform | CUDA | NVIDIA | NVIDIA. [online] Available at:
http://www.nvidia.com/object/cuda_home_new.html
(accessed 20.06.16).

[70] J. Kurzak, S. Tomov, J. Dongarra, Autotuning GEMM kernels
for the Fermi GPU, IEEE Trans. Parallel Distrib. Syst. 23 (2012)
2045-2057.

[71] G. Zumbusch, Tuning a finite difference computation for
parallel vector processors, 11th Int. Symp. Parallel and
Distrib. Comput. CPS, IEEE, pp. 63-70, 2012.

[72] J. Lai, A. Seznec, Performance upper bound analysis and
optimization of SGEMM on Fermi and Kepler GPUs, in Code
Generation and Optimization (CGO), 2013 IEEE/ACM
International Symposium on, 2013, pp. 1-10.

[73] RM.K.J.E. Hopcroft, A n5/2 algorithm for maximum
matchings in bipartite graphs, SIAM J. Comput. 2 (1973) 225-
231.

[74] J.C. Sancho, D.J. Kerbyson, Analysis of double buffering on
two different multicore architectures: Quad-core Opteron
and the Cell-BE, International Parallel and Distributed
Processing Symposium (IPDPS), IEEE, Los Alamitos, 2008.

[75] S. Few, Data visualization for human perception,
Encyclopedia of Human-Computer Interaction, 2010.

[76] W.C.H.AM.EK.D.R. Engler, C: a language for high-level,
efficient, and machine-independent dynamic code
generation, Proc. 23rd Annual ACM Symp. Principles of
Programming Languages, 1996.

[77] B. Nichols, D. Buttlar, J. Farrell, Pthreads programming: A
POSIX standard for better multiprocessing, O’Reilly Media,
Inc., 1996.

[78] W. Asghar, Y. Wan, A. Ilyas, R. Bachoo, Y. Kim, S.M. Igbal,
Electrical fingerprinting, 3D profiling and detection of tumor
cells with solid-state micropores, Lab Chip 12 (2012) 2345-
2352.

[79] N.-P. Tran, M. Lee, S. Hong, D.H. Choi, Multi-stream parallel
string matching on Kepler architecture, in: Mobile,
Ubiquitous, and Intelligent Computing, Springer, 2014, pp.
307-313.

[80] R. Salomon-Ferrer, A.W. Gotz, D. Poole, S. Le Grand, R.C.
Walker, Routine microsecond molecular dynamics
simulations with amber on GPUs. 2. Explicit solvent particle
mesh Ewald, J. Chem. Theory Comput. 9 (2013) 3878-3888.

http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0260
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0260
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0265
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0265
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0265
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0265
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0265
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0270
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0270
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0270
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0270
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0275
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0275
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0275
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0280
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0280
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0280
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0285
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0285
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0285
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0290
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0290
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0290
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0290
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr9015
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr9015
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr9015
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr9015
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr9015
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0295
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0295
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0295
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0295
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0300
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0300
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0300
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0300
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0300
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0305
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0305
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0305
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0305
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0305
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0310
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0310
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0310
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0315
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0315
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0315
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0320
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0320
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0320
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0325
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0325
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0325
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0325
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0330
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0330
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0330
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0335
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0335
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0335
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0340
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0340
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0340
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0340
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0345
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0345
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0345
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0345
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0350
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0350
http://www.nvidia.com/object/cuda_home_new.html
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0355
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0355
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0355
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0360
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0360
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0360
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0365
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0365
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0365
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0365
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0370
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0370
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0370
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0375
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0375
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0375
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0375
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0380
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0380
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0385
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0385
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0385
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0385
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0390
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0390
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0390
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0395
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0395
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0395
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0395
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0400
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0400
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0400
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0400
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0405
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0405
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0405
http://refhub.elsevier.com/S0169-2607(15)30412-0/sr0405

	 An accelerated framework for the classification of biological targets from solid-state micropore data
	 Introduction
	 Methods and experimental setup
	 System overview
	 GPU architecture and programming model
	 GPU-based machine-learning algorithm (k-nearest neighbor)
	 Mathematical formula
	 Euclidean distance
	 Sorting distance matrix
	 Decision in k neighborhood

	 System components
	 Data pre-processor
	 Pulse-detector
	 Feature extractor
	 Pulse-classifier
	 Visualization

	 Experimental setup
	 Core i7-based GPU setup
	 CUDA
	 Pthreads
	 Lines of code
	 Datasets
	 Solid-state micropores

	 Results
	 Detection accuracy
	 Statistical significance of features
	 ANOVA of pulse features
	 Classification results
	 Case with 20% training sample data and k = 5 vs. k = 10
	 Case with 50% training sample data and k = 5 vs. k = 10
	 Case for 80% training sample data and k = 5 vs. k = 10

	 Accuracy of classification
	 Performance results

	 Discussion
	 Conclusions
	 Acknowledgments
	 References

