

DIET EXAMPLE

Consider an impecunious student who decides to eat meals consisting of only milk, tuna fish, bread, and spinach. Formulate a linear program to minimize cost while meeting the required daily allowance (RDA) of various nutrients.

		DA	ΤΑ		
	Gallons of milk x ₁	Pounds of Tuna x ₂	Loaves of Bread x ₃	Pounds of Spinach x ₄	RDA
Vit. A	6400	237	0	34000	5000 IU
Vit. C	40	0	0	71	75 mg
Vit. D	540	0	0	0	400 IU
Iron	28	7	13	8	12 mg
Cost	\$3.00	\$2.70	\$1.80	\$2.16	

```
\begin{array}{rl} \text{Minimize } z=3.00x_{1}+2.70x_{2}+1.80x_{3}+2.16x_{4} \\ \text{s.t.} \\ & 6400x_{1}+237x_{2}+0x_{3}+34000x_{4} & \geq 5000 & \text{vit. A} \\ & 40x_{1}+0x_{2}+0x_{3}+71x_{4} & \geq 75 & \text{vit. C} \\ & 540x_{1}+0x_{2}+0x_{3}+0x_{4} & \geq 400 & \text{vit. D} \\ & 28x_{1}+7x_{2}+13x_{3}+8x_{4} & \geq 12 & \text{iron} \\ & & x_{1}, x_{2}, x_{3}, x_{4} & \geq 0 \end{array}
```

EXAMPLE

Greenthumb.com, a fertilizer company, wants to make two types of fertilizers: high-nitrogen and all-purpose fertilizers. There are two types of components needed to make these fertilizers. Component 1 consists of 60% nitrogen and 10% phosphorous and costs 20 cents per pound. Component 2 consists of 10% nitrogen and 40% phosphorous and costs 30 cents per pound. The company wants to produce 5000 25-pound bags of high-nitrogen fertilizer and 7000 25-pound bags of allpurpose fertilizer. Let x_1 denote the amount of component 1 required to make high-nitrogen fertilizer and x_2 denote the amount of component 2 required to make high-nitrogen fertilizer. Similarly let y_1 and y_2 denote the amounts of component 1 and component 2, respectively, required to make all-purpose fertilizer. High-nitrogen fertilizer must contain 40 – 50 % nitrogen by weight and all-purpose fertilizer must contain at most 20 % phosphorous by weight. Greenthumb.com wants to minimize the total cost of producing these fertilizers.

 $\begin{array}{l} \text{Minimize } z = 0.2(x_1 + y_1) + 0.3(x_2 + y_2) \\ \text{ s.t.} \\ x_1 + x_2 \geq 125,000 \\ y_1 + y_2 \geq 175,000 \\ \text{-}0.20x_1 + 0.30x_2 \leq 0 \\ 0.10x_1 - 0.40x_2 \leq 0 \\ \text{-}0.10y_1 + 0.20y_2 \leq 0 \\ x_1, x_2, y_1, y_2 \geq 0. \end{array}$

EXAMPLE

ChemLabs uses raw materials I and II to produce two domestic cleaning solutions A and B. The daily availabilities of raw materials I and II are 160 and 145 units, respectively. One unit of solution A consumes 0.5 unit of raw material I and 0.6 unit of raw material II, and one unit of solution B uses 0.4 unit of raw material I and 0.3 unit of raw material II. The profits per unit of solutions A and B are \$8 and \$10, respectively. The daily demands for solutions A and B are exactly 175 and 200 units, respectively, all of which may not be able to be fulfilled. Find the optimal daily production amounts of A and B.

SOLUTION

Let x be the units of solution A to be made, and let y be the units of solution B to be made.

Maximize z = 8x + 10ys.t. $0.5x + 0.4y \le 160$ I $0.6x + 0.3y \le 145$ II $x \le 175$ A $y \le 200$ B $x,y \ge 0$

HOMEWORK 1

An industrial recycling center uses two scrap aluminum metals, A and B, to produce a special alloy. Scrap A contains 6% aluminum, 3% silicon, and 4% carbon. Scrap B has 3% aluminum, 6% silicon and 3% carbon. The costs per ton for scraps A and B are \$100 and \$80, respectively. The specifications of the special alloy are as follows:

- The silicon content must lie between 3% and 5%
- The carbon content must be between 3% and 7%

Formulate a linear program that can be used to determine the amounts of scrap A and B that should be used to minimize the cost of creating 1000 tons of the special alloy.

GRAPHICAL SOLUTION OF LINEAR PROGRAMMING

Maximize $z = 3x_1+5x_2$ subject to $3x_1 + 2x_2 \le 18$ $x_1 \le 4$ $x_2 \le 6$ $x_1, x_2 \ge 0$

Before giving properties 4 and 5, rewrite the problem by adding slack variables. A slack variable is added to make an inequality into an equation. By adding slack variables, the problem becomes

Maximize
$$z = 3x_1+5x_2$$

subject to
 $3x_1 + 2x_2 + x_3 = 18$
 $x_1 + x_4 = 4$
 $x_2 + x_5 = 6$
 $x_1, x_2, x_3, x_4, x_5 \ge 0.$

BASIC SOLUTIONS
For m equations and n unknown variables (m
$$x_1+x_2+x_3=2\\2x_1-x_2+x_3=1.$$
 Pick x₃, set it to zero, and solve for the others.
$$x_1+x_2=2\\2x_1-x_2=1$$

 $x_1 = 1$, $x_2 = 1$ are basic variables. $x_3 = 0$ is a non-basic variable.

EXAMPLE

 $x_1 + x_2 + x_3 = 2$ 2 $x_1 - x_2 + x_3 = 1$

Pick x_2 , set it to zero, and solve for the others.

 $x_1 + x_3 = 2$

 $2x_1 + x_3 = 1$

$$x_1 = -1$$
, $x_3 = 3$ are basic variables.

 $x_2 = 0$ is a non-basic variable.

BASIC FEASIBLE SOLUTION

A basic solution to the constraints (omitting nonnegativity) of LPP with slacks and surplus variables with all basic variables ≥ 0 .

In the previous examples, Example 1 yielded a BFS while Example 2 did not.

DEGENERATE BFS

A basic feasible solution where at least one basic variable is 0.

Example 1:

 $x_1 + x_2 + x_3 = 1$

$$2x_1 + x_2 + x_3 = 2$$

Pick $x_3 = 0$ as nonbasic and x_1 , x_2 as basic. Solve

 $x_1 + x_2 = 1$

 $2x_1 + x_2 = 2$

to obtain $x_1 = 1$, $x_2 = 0$ for the basic variables.

Example 2:

 $x_1 + x_2 + x_3 = 1$

$$x_1 + x_2 + 3x_3 = 2$$

Arbitrarily chose x_3 as the nonbasic variable to give $x_1+x_2 = 1$

 $x_1 + x_2 = 2$.

Note the contradiction. Thus there is no basic solution with $x_3 = 0$.

Property 4:

With slacks as needed to make all constraints equality, there is a one-to-one correspondence between the BFS of these equality constraints and the extreme points of the original constraints.

Rewrite to get Maximize $z = 3x_1+5x_2$ subject to $3x_1 + 2x_2 + x_3 = 18,$ $x_1 + x_4 = 4,$ $x_2 + x_5 = 6,$ $x_1, x_2, x_3, x_4, x_5 \ge 0$

Rewrite to give $\begin{aligned} z - 3x_1 - 5x_2 &= 0\\ 3x_1 + 2x_2 + x_3 &= 18\\ x_1 &+ x_4 &= 4\\ x_2 &+ x_5 = 6. \end{aligned}$ Note: m=3 , n=5 => 10 possible BFS's A BFS is found using the last 3 equations while keeping track of z using the first equation. Initial BFS:

$$x_3 = 18, x_4 = 4, x_5 = 6$$
 (BV)
 $x_1 = 0, x_2 = 0$ (NBV)
and $z = 0$

Note that making x_2 positive increases z the most per unit.

Hence, make x_2 a BV and keep $x_1=0$ a NBV.

Next, rewrite the last 3 equations to give

$$x_{3} = 18 - 3x_{1} - 2x_{2}$$

$$x_{4} = 4 - x_{1}$$

$$x_{5} = 6 - x_{2}.$$

Now $\begin{array}{l} x_{3} = 18 - 2x_{2} \\ x_{4} = 4 \\ x_{5} = 6 - x_{2} \\ x_{5} = 6 - x_{2} \\ x_{5} = 8 \\ x_{5$

$$\begin{array}{rcl} z - 3x_1 - 5x_2 & = & 0 \\ & 3x_1 + 2x_2 + x_3 & = & 18 \\ & x_1 & + x_4 & = & 4 \\ & x_2 & + & x_5 = & 6 \end{array}$$
Multiply 4th equation by 5 and add to z row and
multiply 4th equation by -2 and add to 2nd equation.
$$\begin{array}{rcl} z - & 3x_1 & + & 5x_5 = & 30 \\ & 3x_1 & + & x_3 & - & 2x_5 = & 6 \\ & x_1 & & + & x_4 & = & 4 \\ & x_2 & & + & x_5 = & 6 \end{array}$$

It follows that $z + x_3 + 3x_5 = 36$ $x_1 + 1/3x_3 - 2/3x_5 = 2$ $-1/3x_3 + x_4 + 2/3x_5 = 2$ $x_2 + x_5 = 6.$ All of the negative variables have been removed from the objective function meaning that it has been optimized. Thus z = 36, x_1 = 2, x_2 = 6.

SIMPLEX ALGORITHM

- 1. Must have all RHS (not z) \geq 0.
- 2. Entering variable is most negative element in top row.
- 3. Leaving variable is found by finding the smallest ratio of the RHS to positive elements of pivot column. (If no positive elements, the problem is unbounded.)
- 4. Form new tableau using Gauss-Jordan elimination.
- 5. If elements in top row ≥ 0 , stop. Otherwise, go to 2.

BV	Z	↓ 	x ₂	x ₃	x ₄	x ₅	RHS]
Z X ₃ X ₄ X ₂	1 0 0 0	-3 (3) 1 0	0 0 0 1	0 1 0 0	0 0 1 0	5 -2 0 1	30 6 4 6	-
		TABI	LEAU TW	70				

BV	Z	x ₁	x ₂	x ₃	x ₄	x ₅	RHS
Z	1	0	0	1	0	3	36
x ₁	0	1	0	1/3	0	-2/3	2
X ₄	0	0	0	-1/3	1	2/3	2
x ₂	0	0	1	0	0	1	6
		FI	NAL TAB	LEAU			

EXAMPLE

Maximize $z = 2x_1+3x_2$ subject to $x_1 + x_2 \le 3$ $x_1 - x_2 \le 1$ $x_1, x_2 \ge 0$

		T	ABLI	EAU			
BV	Z	X ₁	\downarrow \mathbf{x}_2	X ₃	x ₄	RHS	
Z	1	-2	-3	0	0	0	
x ₃	0	1		1	0	3	-
x ₄	0	1	-1	0	1	1	_
Z	1	1	0	3	0	9	
x ₂	0	1	1	1	0	3	
x ₄	0	2	0	1	1	4	
							•

HOMEWORK 2

Maximize $z = 2x_1 + 5x_2$

subject to

$$x_1 + x_2 \le 12$$

 $x_1, x_2 \ge 0$

Solve using the simplex method by the tableau approach.

Alternately, note that in maximization problem the most negative value is chosen from the top row of the tableau. For a minimization problem the most positive value is selected from the top row of the table. <u>All</u> other steps are the same for both maximization and minimization problems.

Minimize $z = -2x_1 + 5x_2$
subject to
$x_1 + x_2 \le 12$
3x ₁ +x ₂ ≤ 18
$x_1, x_2 \ge 0.$
Add slack variables to get
Minimize $z = -2x_1 + 5x_2$
subject to
$x_1 + x_2 + x_3 = 12$
$3x_1 + x_2 + x_4 = 18$
$x_1, x_2, x_3, x_4 \ge 0.$

Γ

		↓	I		1		1
BV	Ζ	x ₁	x ₂	X ₃	x ₄	RHS	
Ζ	1	2	-5	0	0	0	
X ₃	0	1	1	1	0	12	
x ₄	0	(3)	1	0	1	18	ŀ
Z	1	0	-17/3	0	-2/3	-12	
X ₃	0	0	2/3	1	-1/3	6	
x ₁	0	1	1/3	0	1/3	6	
-							

2. Unrestricted variables

 $\begin{array}{l} \text{Maximize } z = -2x_1 + x_2 \\ \text{subject to} \\ x_1 + x_2 \leq 10 \\ 2x_1 + x_2 \leq 16 \\ x_1 \geq 0 \\ x_2 \text{ UR} \end{array}$ $\begin{array}{l} \text{Let } x_2 = x_2^+ - x_2^-, \text{ where } x_2^+, x_2^- \geq 0. \text{ These} \\ \text{new variables cannot be basic variables at} \\ \text{the same time. At least one of them will be} \\ \text{zero, or both of them will be zero.} \end{array}$

Rewrite the problem as Maximize $z = -2x_1 + (x_2^+ - x_2^-)$ subject to $x_1 + (x_2^+ - x_2^-) \le 10$ $2x_1 + (x_2^+ - x_2^-) \le 10$ $2x_1 + (x_2^+ - x_2^-) \le 10$ $x_1, x_2^+, x_2^- \ge 0$. Add slack variables to give Maximize $z = -2x_1 + x_2^+ - x_2^$ subject to $x_1 + x_2^+ - x_2^- + x_3 = 10$ $2x_1 + x_2^+ - x_2^- + x_4 = 16$ $x_1, x_2^+, x_2^-, x_3, x_4 \ge 0$. Solve as usual and get $x_2 = (x_2^+ - x_2^-)$ afterwards.

HOMEWORK 10

Maximize $z = -2x_1 - 4x_2$ s.t. $x_1 + 3x_2 \le 10$ $2x_1 + x_2 \le 16$ $x_1 \ge 0, x_2$ UR

3. <u>Tie for Entering Variable</u>

The top row of the maximization problem is shown below. It is seen that coefficients of x_1 and x_2 are equal. Break the tie arbitrarily. It doesn't make difference which variable x_1 or x_2 is chosen to enter.

BV	Z	x ₁	x ₂	x ₃	x ₄	RHS
Z	1	-1	-1	0	0	0

4. Tie for leaving variable

In the maximization tableau below the values are same for both x_3 and x_4 . Break the tie arbitrarily.

BV	Z	x ₁	x ₂	x ₃	x ₄	RHS
Z	1	0	-2	0	0	12
x ₄	0	1	1	0	1	12
x ₃	0	0	1	1	0	12

When there is a tie for leaving variable, the next tableau has a BFS with a 0. Usually this has no effect. Cycling is possible, but there are ways to overcome it. We will discuss this later.

	tinal ite	eration	of the n	naximiz	ation					
•		shown								
		/ariable								
•		neans t			•					
		Here x ₄		e entei	eu wili	noul				
changing z.										
BV z x ₁ x ₂ x ₃ x ₄ RHS										
BV	Ζ	x ₁	x ₂	x ₃	x ₄	RHS				
BV z	z 1	x ₁ 0	x ₂ 0	x ₃	x ₄ 0	RHS 36				
	z 1 0	x ₁ 0 1	x ₂ 0 0							

6. <u>No feasible Solution - related to 7 below.</u>

7. Initial basic feasible solution

To begin a problem, make every constraint into an equality (hopefully with a nonnegative rhs) by adding slack or subtracting surplus variables. If it has \leq sign, add a slack variable. If it has a \geq sign, subtract a surplus variable. For every such constraint without an obvious basic variable, add an artificial variable.

$$\begin{array}{l} \text{Maximize } z = x_1 + 2x_2 + 3x_3 \\ \text{subject to,} \\ x_1 + x_2 + x_3 = 12 \\ 2x_1 + x_2 - x_3 \ge 10 \\ 3x_1 - x_2 + 2x_3 \le 18 \\ x_1, x_2, x_3 \ge 0 \end{array}$$

$$\begin{array}{l} \text{Adding the slack variables to the constraints} \\ x_1 + x_2 + x_3 &= 12 \\ 2x_1 + x_2 - x_3 - x_4 &= 10 \\ 3x_1 - x_2 + 2x_3 &+ x_5 = 18 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{array}$$

Constraint 1 doesn't have an obvious variable that can be selected as basic variable. The basic variable in constraint 2 is negative. Therefore for these 2 constraints we add artificial variables.

BIG-M METHOD

- · Solve problem with artificial variables
- Two cases for solution:
 - All artificial variables become non-basic (zero) and z has no "M penality" if and only if the original problem is feasible.
 - At least one artificial variable is basic (positive) and z has an "M penality" in every optimal solution if and only if the original problem is infeasible.

E	3V	Z	X ₁	X ₂	X ₃	X ₄	X ₅	RHS
	z	1	-2	-1	0	0	M	0
2	X ₃	0	1	1	1	0	0	10
2	X ₅	0	1	2	0	-1	1	16
	ne fir	•		Denicier	il of lr	ie das	sic va	riable 0
		•	w.	$\frac{1}{x_2}$	$\frac{1101 \text{ tr}}{\text{x}_3}$		\mathbf{x}_{5}	RHS
tł	ne fir	st ro	W.	Ļ				
tł BV	ne fir z	st ro	¹ M	X2	X ₃	X ₄	X ₅	RHS

								_
BV	Z	\mathbf{X}_{1}^{\bullet}	X ₂	X ₃	X ₄	X ₅	RHS	
Z	1	- 3/2	0	0	-1/2	1/2+ M	8	
X ₃	0	1/2	0	1	1/2	- 1/2	2	₊
X ₂	0	1/2	1	0	- 1/2	1/2	8	

x_5 left basis so original problem is feasible. Yay!

B.V.	Z	X ₁	X ₂	X ₃	X ₄	X ₅	RHS
z	1	0	0	3	1	M-1	14
\mathbf{X}_1	0	1	0	2	1	-1	4
X ₂	0	0	1	-1	-1	1	6

All the coefficients of the x's in the top row are non-negative, so we have the optimal solution z = 14, $x_1 = 4$ and $x_2 = 6$.

B	V	Z Z	K ₁	X ₂	X ₃	\mathbf{X}_4	X ₅	RHS
2	z	1 -	2	-1	0	0	Μ	0
X		0	1	2	1	0	0	10
X	5	0	1	2	0	-1	1	16
		st row.	coen	ricien	it of tr	ie bas	ic va	riable (
th		0	1	$\frac{1}{x_2}$	$\frac{1100}{X_3}$	x_4		
	ne firs	st row.		Ļ				
th BV	e firs	x_1	-1-	\mathbf{X}_{2}	X ₃	X ₄	X ₅	RHS

		ļ	ļ								_
BV	Z	X	1	X ₂	2	X ₃	X ₄	X ₅	RF	IS	
z	1	- 3	/2	0	1/2	+M	Μ	0	5-6	бM	
x ₂	0	1/	$\overline{2}$	1	1	/2	0	0	5	5	←
X ₅	0	0)	0	-	-1	- 1	1	6	5]
B.V	. z		\mathbf{X}_1	Σ	K ₂	X ₃		X ₄	X ₅	RH	S
Z	1		0		3	M+	2	Μ	0	20-6	M
X ₁	0		1	,	2	1		0	0	10)
X ₅	0		0)	-1		-1	1	6	
negat since	all the ive, th x_5 is ar al prob	e so tific	lution cial ar	n is z nd po	=20 sitiv	-6M,	x ₁ =	10 an	$d x_5 =$	6. Bu	

			AN	IPL	E	
Maximiz		$= 2x_{1}$				
Ś	s.t.	-10				
		_≤10				
	Х	$x_1 \geq 0.$				
			+			1
	BV	Ζ	X ₁	X ₂	RHS	
	Z	1	-2	0	0	
	X ₂	0	-1	1	10	
Since all the	coeffic	ients ir	n the x	1 colum	n are neg	ative, there
is no leaving	variab	le. Her	nce, x ₁	and z	can be inc	reased
	1 11			nbound	4 ~ 4	

DUALITY

Primal Problem P:

Maximize
$$z = \sum_{j=1}^{n} c_j x_j$$

s.t.
 $a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n \le b_1$
 $a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n \le b_m$
 $x_1, ..., x_n \ge 0$

Dual Problem D: $Minimize w = \sum_{i=1}^{m} b_i y_i$ s.t. $a_{11}y_1 + a_{21}y_2 + \dots + a_{m1}y_m \ge c_1$ $a_{1n}y_1 + a_{2n}y_2 + \dots + a_{mn}y_m \ge c_n$ $y_1, \dots, y_m \ge 0$

		Primal	
Dual	Infeasible	Unbounded	Optimal
Infeasible	Rare	X	
Unbounded	Х		
Optimal			\odot

	DUAL
Max	Min
<u><</u> Constraint	\geq 0 Variable
≥ Constraint	≤0 Variable
= Constraint	UR Variable
≥ 0 Variable	\geq Constraint
≤0 Variable	<u><</u> Constraint
UR Variable	= Constraint

- (excluding RHS) to negative elements of pivot row. (If no negative elements, problem is infeasible.)
- 4. Form a new tableau as before.
- 5. If all RHS (not z) \geq 0, stop. Otherwise, go to 2.

		1	↓ 			i
BV	Ζ	x ₁	x ₂	x ₃	x ₄	RHS
Z	1	-2	-1	0	0	0
x ₃	0	-1	-1	1	0	-4
x ₄	0	-5	-3	0	1	-15
Z	1	-1/3	0	0	-1/3	5
x ₃	0	2/3	0	1	-1/3	1
x ₂	0	5/3	1	0	-1/3	5

HOMEWORK 12

Maximize $z = -3x_1 - 2x_2$ s.t $x_1 + x_2 \ge 4$ $3x_1 + 5x_2 \ge 15$ $x_1, x_2 \ge 0.$

With a slack variable, the problem becomes

Maximize
$$z = 3x_1 + 2x_2$$

s.t
 $x_1 + x_2 + x_3 = 4$,
 $x_1, x_2, x_3 \ge 0$.

		I			
BV	Z	x ₁	x ₂	x ₃	RHS
Z	1	-3	-2	0	0
x ₃	0		1	1	4
DV		1	1		DUC
BV	Z	x ₁	x ₂	x ₃	RHS
Ζ	1	0	1	3	12
x ₁	0	1	1	1	4

Now add the constraint

x₁ ≤ 2

to the original problem. With a slack variable $x_4 \ge 0$, this constraint becomes

 $x_1 + x_4 = 2.$

Add this equation to the tableau and proceed using the dual simplex.

BV	Z	x ₁	x ₂	x ₃	x ₄	RHS
Z	1	0	1	3	0	12
x ₁	0	1	1	1	0	4
x ₄	0	1	0	0	1	2

			Ļ				
BV	Z	x ₁	x ₂	x ₃	x ₄	RHS	
Z	1	0	1	3	0	12	Dual Simplex
x ₁	0	1	1	1	0	4	
x ₄	0	0	-1	-1	1	-2	←
							•

BV	Z	x ₁	x ₂	x ₃	x ₄	RHS
Z	1	0	0	2	1	10
x ₁	0	1	0	0	1	2
x ₂	0	0	1	1	-1	2

This tableau yields the new optimal solution.

HOMEWORK 13

Minimize $z = -2x_1 + 5x_2$ s.t $3x_1 + 4x_2 \le 12$ $x_1, x_2 \ge 0.$

After solving this problem, add the constraint

 $x_1 + 2x_2 \ge 6$.

INTEGER PROGRAMMING

Maximize $z = 3x_1 + x_2$ s.t. $x_1 + x_2 \le 4$ $3x_1 + 5x_2 \le 15$ $x_1, x_2 \ge 0$ x_1, x_2 integers.

If x_1 , x_2 are integers, then the problem is a pure integer programming problem. If only x_1 or x_2 is an integer, then the problem is a mixed integer programming problem.

BV	Z	x ₁	x ₂	X ₃	RHS
Z	1	-3 4	-1 3	0	0
х ₃	0	4	3		10
z	1	0	5/4	$\frac{3}{4}$	15/2
Σ Χ ₁	0	1	$\frac{3}{4}$	1/	$\frac{5}{2}$

		$\begin{array}{r} \mathbf{x}_1 - \mathbf{x}_1 \\ \mathbf{x}_1 + \mathbf{x}_2 \end{array}$				
Add	x₄ to	the pre	evious	table		
BV	Z	х ₁	X_2		X ₄	RHS
Z	1	Ó	$\frac{5}{4}$	X ₃ 3⁄4	Ó	$\frac{15}{2}$
X 1	0	1	3⁄4	1/4	0	$\frac{5}{2}$
x ₄	0	-1	0	0	1	-3
Addi	ing ro	w cons	straints	$s x_1$ and	X ₄	
X ₄	0	0	3⁄4	1/4	1	-1/2

			x ₁ + x ₂	1 = 2			
Add	this ea	quality	with bv	x ₄ to th	e optim	al table.	
BV	Z	x ₁	x ₂	x ₃	x ₄	RHS	
z	1	0	X ₂ 5/4	3⁄4	0	$\frac{15}{2}$	
x ₁	0	1		1⁄4	0	$\frac{5}{2}$	
\mathbf{x}_4	0	1	0	0	1	2	
Subtract the x_1 row from the x_4 row to get a new x_4 row.							
x ₄	0	0	$-\frac{3}{4}$	$-\frac{1}{4}$	1	$-\frac{1}{2}$	
Now	x_2 ent	ers and	d x ₄ leav	/es.			
Z	1	0	0	$\frac{1}{3}$	5/3	20/3	
X ₁	0	1	0	0	1	2	
X_2	0	0	1	$\frac{1}{3}$	-4/3	$\frac{2}{3}$	

Fathoming Rules:

- 1. Infeasible
- 2. All x_i integer that supposed to be
- A value of z no better than some z for feasible x_i to original integer restrictions.

MIXED IPP EXAMPLE

$$\begin{array}{ll} \text{Max } z = 4 \; x_1 - 2 x_2 + 7 x_3 - x_4 \\ \text{s.t.} \\ x_1 & +5 \; x_3 & \leq 10 \\ x_1 + \; x_2 - \; x_3 & \leq 1 \\ 6 x_1 - 5 x_2 & \leq 0 \\ - \; x_1 & +2 \; x_3 - 2 \; x_4 \; \leq \; 3 \\ x_j \geq 0, \text{ for } j = 1,2,3,4 \\ x_j \text{ integer for } j = 1,2,3 \end{array}$$

$\begin{array}{l} \textbf{BINARY IPP} \\ \text{Max } z = 3x_1 + x_2 \\ \text{s.t.} \\ 4x_1 + 3x_2 \leq 10 \\ x_1, x_2 \geq 0 \\ x_1, x_2 \in \{0,1\} \end{array}$ To solve, simply add $\begin{array}{c} x_1 \leq 1 \\ x_2 \leq 1 \\ x_1, x_2 \text{ integer,} \\ \text{eliminate the binary constraint, and solve as a pure IPP. \end{array}$

The aim of the model is to minimize the shipping cost, i.e., $Min z = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$ s.t. $\sum_{j=1}^{n} x_{ij} = s_{j}, i = 1,...,m$ $\sum_{i=1}^{m} x_{ij} = d_{j}, j = 1,...,n$ $x_{ij} non-negative integer.$ The transportation problem can be solved by the simplex algorithm.

$$\begin{split} \text{Min } z &= \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij} \\ \text{ s.t. } \\ &\sum_{j=1}^{n} x_{ij} = 1, \text{ i } = 1, \dots, n \\ &\sum_{i=1}^{n} x_{ij} = 1, \text{ j } = 1, \dots, n \\ &x_{ij} \in \{0,1\}. \end{split}$$

The assignment model is a binary integer programming problem that can be solved as a transportation model.

PRACTICE TEST 1 1. Apply the simplex method to the following linear programming problem. $Maximize z = 6x_1 - 3x_2$ $\underbrace{s.t.}_{x_1 + 2x_2 \le 8}$ $x_1 - x_2 \le 4$ $x_1, x_2 \ge 0.$ Answer: $z = 28, x_1 = 16/3, x_2 = 4/3.$

3. The Crazy Nut Company wishes to market two special nut mixes during the holiday season. Mix 1 contains 2/3 pound of peanuts and 1/3 pound of cashews; mix 2 contains 3/5 pound of peanuts, 1/4 pound of cashews, and 3/20 pound of almonds. Mix 1 sells for \$1.49 per pound; mix 2 sells for \$1.69 per pound. The data pertinent to the raw ingredients appear in the table. Assuming that Crazy Nut can sell all cans of either mix that it produces, formulate an LP model to determine how much of mixes 1 and 2 the company should produce.

Ingredient	Amount Available (lb)	Cost per Ib
Peanuts	30,000	\$.35
Cashews	12,000	\$.50
Almonds	10,000	\$.70

A nowow	
Answer:	
	$x_1 = number \# mix 1$
	$x_2 =$ number # mix 2
	Max $z = 1.09x_1 + 1.25x_2$
	s.t. $2/3x_1 + 3/5x_2 \le 30000$
	$1/3x_1 + 1/4x_2 \leq 12000$
	$3/20x_2 \leq 10000$
	$\mathbf{x}_1, \mathbf{x}_2 \geq 0.$

4. Consider the linear programming problem

$$\max z = 4x_1 + x_2$$

$$\frac{s.t.}{2x_1 + 3x_2} \le 6$$

$$x_1 - x_2 \ge 0$$

 $x_1, x_2 \ge 0.$ The optimal tableau is given below, where x_3 is the slack variable added to the constraint.

BV	z	x ₁	x ₂	X ₃	RH S
Z	1	0	5	2	12
x ₁	0	1	3/2	1/2	3

Add the constraint $x_2 \geq 1 \,$ to the original problem and solve it beginning with the above tableau.

Answer: z = 7, $x_1 = 3/2$, $x_2 = 1$.

5. Solve the following integer programming problem. Maximize $z = x_1 + x_2$ s.t. $x_1 + 5x_2 \le 11$ $3x_1 + x_2 \le 8$ $x_1, x_2 \ge 0$ x_1, x_2 integer. Solution on next page:

$$z = \frac{19/5}{x_1 = 2}$$

$$x_2 = \frac{9/5}{x_2}$$

$$x_2 \le 1$$

$$x_2 \ge 2$$

$$x_2 \ge 2$$

$$x_2 \ge 2$$

$$x_2 \ge 2$$

$$x_1 = 3$$

$$x_1 = 1$$

$$x_2 = 1$$

$$x_2 = 2$$

NONLINEAR PROGRAMMING

 $\max f(x_1, x_2, x_3) = x_1^2 + x_1 x_2 + x_1 x_3$ s.t. $\frac{x_1}{x_2} + x_3^2 \le 100$ $x_1 + 2x_2 x_3 \ge 250$ $x_1, x_2, x_3 \ge 0$

Applications of NLP Data networks – routing Production planning Resource allocation Modeling human or organizational behavior

Example 2

Consider the problem of determining locations for two new high schools in a set of *P* subdivisions N_j . Let w_{1j} be the number of students going to school A and w_{2j} be the number of students going to school B from subdivision N_j . Assume that the student capacity of school A is c_1 and the capacity of school B is c_2 and that the total number of students in each subdivision is r_j . We would like to minimize the total distance traveled by all the students given that they may attend either school A or B. Construct a nonlinear program to determine the locations (a, b) and (c, d) of high schools A and B, respectively assuming the location of each subdivision N_i is modeled as a single point denoted (x_i, y_i) .

Notation

- $f: \mathbb{R}^1 \rightarrow \mathbb{R}^1$ means f(x) = y
- $f: \mathbb{R}^n \rightarrow \mathbb{R}^1$ means $f(x_1, \dots x_n) = y$
- In general we want to

 $\max f(x_1, \dots x_n)$

s.t.

$$(x_1,\ldots,x_n) \in A \subset R'$$

where A is the feasible region.

Definitions

- 1. The point x^* is a local maximum if $f(x) \le f(x^*)$ for all x in some neighborhood of x^* .
- 2. The point x^* is a global maximum if $f(x) \le f(x^*)$ for all x.
- 3. The term maximum means global maximum and is a point in the domain.

It follows that

$$f'(x) = \begin{cases} 3(x-2)^2 + 1, \ x > 0\\ 3(x-2)^2 - 1, \ x < 0. \end{cases}$$

Thus

$$3x^2 - 12x + 13 = 0, x > 0$$

 $3x^2 - 12x + 11 = 0, x < 0.$

Unconstrained Problems in Rⁿ

- Let $f: \mathbb{R}^n \to \mathbb{R}^1$
- Let $\boldsymbol{x} \in R^n$

$$Q(x) = x^T A x = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j$$

 Q(x) is called a quadratic form, where the matrix A = [a_{ii}] is symmetric.

Example

• To establish sufficiency compute

$$H|_{X0} = \begin{bmatrix} -2 & 0 & 0 \\ 0 & -2 & 1 \\ 0 & 1 & -2 \end{bmatrix}$$

- The principle minor determinants have the values 2,4, and 6.
- Thus $H|_{X0}$ is a negative definite and $X_0 = (1/2, 2/3, 4/3)$ represents a local maximum point.

• For example we know that the function f below is concave on R^2 because we have already shown that its Hessian matrix is negative semidefinite for all (x_1, x_2) .

$$f(x_1, x_2) = x_1 + 3x_2 - 4x_1x_2 - 2x_1^2 - 3x_2^2 - 7$$

HOMEWORK 17

Check if the following function is convex or concave:

$$f(x_1, x_2) = x_1 + 3x_1x_2 + x_2^2 - 7.$$

(P) max
$$f(x_1,...,x_n)$$

s.t.
 $g_i(x_1,...,x_n) \ge 0, i = 1,...,m$
 $h_k(x_1,...,x_n) = 0, i = 1,...,p$

Checking for Short Cuts

- Check to see if you can find a solution to P by ignoring some or all of the constraints. If this solution also satisfies the neglected constraints, then it is optimal to P.
- Check to see if you can reduce the number of variables in a problem by solving some of the equality constraints for variables and substituting into the objective function and remaining constraints.

EXAMPLE 1

minimize $(x_1 - 1)^2 + (x_2 - 3)^2$ s.t. $x_1^3 + x_2^{.25} \le 4$ $|\sin(x_1 x_2 \pi)| \le \frac{\sqrt{3}}{2}$. By neglecting both constraints,the answer by inspection is $x_1^* = 1$, $x_2^* = 3$.

EXAMPLE 3
(I) maximize
$$x_1(1-x_2)$$

s.t.
 $x_1 + x_2 = 1$
 $x_1^2 + x_2^2 \le 1$.
From the first constraint, $x_2 = 1 - x_1$.
Substitution gives the problem
(II) maximize x_1^2
s.t.
 $x_1^2 + (1 - x_1)^2 \le 1$.

The constraint to (II) reduces to

$$2x_1^2 - 2x_1 \le 0$$
or

$$x_1(x_1 - 1) \le 0.$$
By taking cases this gives

$$0 \le x_1 \le 1.$$
The answer to (II) is thus $x_1^* = 1$ by
inspection and to (I) is $x_1^* = 1, x_2^* = 0.$

HOMEWORK 18

minimize $x_1^2 + x_2^2$ s.t. $x_1 + x_2 = 1$ $\left(x_1^{1/2}\right)\cos(\pi x_2) \le \frac{1}{2}$ $x_1, x_2 \ge 0.$

TO FIND A GLOBAL MAXIMUM FOR PROBLEM P IN PRACTICE:

• Find all interior points $(x_1, ..., x_n)$ for which the partials are 0 (stationary points).

• If *f* is not differentiable everywhere, include also points where the partials $\frac{\partial f}{\partial x_i}$ do not exist together with stationary points to give critical points.

- Find all boundary points $(x_1, ..., x_n)$ satisfying
 - **d** $\nabla f(x_1, ..., x_n) \ge 0$ for all feasible directions **d**.

• Compare values at all these points and choose the largest value. The points giving this largest value are the global maxima if a maximum exists.

The following conditions provide a method for doing this.

FRITZ JOHN NECESSARY CONDITIONS FOR PROBLEM P

Suppose that f, g_1, \dots, g_m , and h_1, \dots, h_p are all differentiable at the maximum (x_1^*, \dots, x_n^*) for P. Then there exist real numbers (Lagrange multipliers) $\alpha, \mu_1, \dots, \mu_m$, and $\lambda_1, \dots, \lambda_p$ such that (x_1^*, \dots, x_n^*) and these constants satisfy the following conditions:

Karush-Kuhn-Tucker Necessary Conditions

- Very frequently the Fritz John conditions can be simplified somewhat because the constraints are "nice" at (x₁*,...x_n*). In that case α=1 and condition 4 is automatically satisfied.
- For our purposes, we take α =1 only when all constraints are linear (or Nota Bene applies) although the optimum usually occurs when α =1. Otherwise the necessary conditions do not involve the objective function.

Nota Bene

- If you're lucky, then
 - The objective function *f* and all of the inequality constraints *g* are concave.
 - The equality constraints *h* are linear.
- In this case, the KKT conditions are both necessary and sufficient.
- α= 1.
- No need to check all candidate solutions.

Weierstrass (Extreme Value) Theorem

- A continuous function on a closed bounded region achieves both its maximum and minimum on the region.
- It follows that if all the functions in P are continuous and the feasible region is bounded, then P has a solution.

HOMEWORK 19-23

Five nonlinear programming problems solved by Lingo, Matlab, or some other standard software are due on March 20 at the beginning of class. These problems must be formulated by the student, so each student will have different problems. A trial version of Lingo can be obtained at <u>www.lindo.com</u>. A copy of your problems and some form of computer printout of the solution are required.

Example 1 in Standard Form: $\max f(x_1, x_2) = -x_1^2 - x_2^2$ *s.t.* $g_1(x_1, x_2) = 3 - x_1 - 2x_2 \ge 0$ $g_2(x_1, x_2) = 3 - 2x_1 - x_2 \ge 0$

Example 1-Fritz John Conditions

$$(1)\begin{cases} -2x_{1} - \mu_{1} - 2\mu_{2} = 0\\ -2x_{2} - 2\mu_{1} - \mu_{2} = 0 \end{cases}$$
$$(2)\begin{cases} \mu_{1}(x_{1} + 2x_{2} - 3) = 0\\ \mu_{2}(2x_{1} + x_{2} - 3) = 0 \end{cases}$$
$$(3)\mu_{1}, \mu_{2} \ge 0$$
$$(4)okay$$
$$(5)\begin{cases} 3 - x_{1} - 2x_{2} \ge 0\\ 3 - 2x_{1} - x_{2} \ge 0 \end{cases}$$

Example 1 – Cases from condition (3) • Case (a) $\mu_1=0, \mu_2=0$ (1) $\Rightarrow x_1 = x_2 = 0$ • Case (b): $\mu_1=0, \mu_2>0$ (1) $\Rightarrow \begin{cases} -2x_1 - 2\mu_2 = 0 \Rightarrow x_1 = -\mu_2 \\ -2x_2 - \mu_2 = 0 \Rightarrow x_2 = -\frac{\mu_2}{2} \\ \therefore x_1 = 2x_2 \end{cases}$ (2) $\Rightarrow 2x_1 + x_2 = 3 \Rightarrow x_1 = 6/5, x_2 = 3/5$ (5) okay

Example 1 – Cases from condition (3) • Case (c) $\mu_1 > 0$, $\mu_2 = 0$ (1) $\Rightarrow \begin{cases} -2x_1 - 2\mu_1 = 0 \Rightarrow x_1 = -\frac{\mu_1}{2} \\ -2x_2 - 2\mu_1 = 0 \Rightarrow x_2 = -\mu_1 \\ \therefore x_2 = 2x_1 \end{cases}$ (2) $\Rightarrow x_1 + 2x_2 = 3 \Rightarrow x_1 = 3/5, x_2 = 6/5$ (5) okay

Example 1 – Cases from condition (3) • Case (d) $\mu_1 > 0$, $\mu_2 > 0$ (2) $\Rightarrow \begin{cases} x_1 + 2x_2 = 3\\ 2x_1 + x_2 = 3\\ \therefore x_1 = x_2 = 1 \end{cases}$ (5) okay

Put in standard form.

$$\max f(x_1, x_2) = -x_1 - 3x_2$$

s.t.
$$h_1(x_1, x_2) = 2x_1^2 + 5x_2^2 - 230 = 0$$

Fritz John Conditions

(1)
$$\begin{cases} -\alpha + 4x_1\lambda_1 = 0\\ -3\alpha + 10x_2\lambda_1 = 0 \end{cases}$$

(2) NA
(3) $\alpha \ge 0$
(4) α, λ_1 not both zero
(5) $2x_1^2 + 5x_2^2 - 230 = 0$

$$\underline{\text{Case II}: \alpha = 1}$$

$$(1) \Rightarrow \begin{cases} 4\lambda_1 x_1 = 1\\ 10\lambda_1 x_2 = 3 \end{cases} \Rightarrow \lambda_1 \neq 0.$$

$$\therefore x_2 = \frac{6}{5} x_1.$$

$$(5) \Rightarrow 2x_1^2 + 5(\frac{6}{5} x_1)^2 = 230.$$

$$\therefore (x_1, x_2) = (5, 6), (-5, -6).$$
Obviously both satisfy (5).

EXAMPLE 3

maximize $x_1 + x_2$ s.t. $x_1^2 + x_2^2 = 1$ $x_1, x_2 \ge 0.$

We rewrite in the standard form of P.

maximize
$$f(x_1, x_2) = x_1 + x_2$$

s.t.
 $g_1(x_1, x_2) = x_1 \ge 0$
 $g_2(x_1, x_2) = x_2 \ge 0$
 $h_1(x_1, x_2) = x_1^2 + x_2^2 - 1 = 0.$

Write the Fritz John Conditions. (1) $\begin{cases} \alpha + \mu_1 + 2x_1\lambda_1 = 0\\ \alpha + \mu_2 + 2x_2\lambda_1 = 0 \end{cases}$ (2) $\begin{cases} \mu_1 x_1 = 0\\ \mu_2 x_2 = 0 \end{cases}$ (3) $\alpha, \mu_1, \mu_2 \ge 0$ (4) $\alpha, \mu_1, \mu_2, \lambda_1$ not all zero (5) $\begin{cases} x_1 \ge 0\\ x_2 \ge 0\\ x_1^2 + x_2^2 - 1 = 0 \end{cases}$

$$\underline{Case I: \alpha = 0}$$

$$\underline{subcase (a): \mu_1 = 0, \mu_2 = 0}$$

$$(4) \Rightarrow \lambda_1 \neq 0.$$

$$(1) \Rightarrow x_1 = x_2 = 0 \otimes (5).$$

$$\underline{subcase (b): \mu_1 = 0, \mu_2 > 0}$$

$$(2) \Rightarrow x_2 = 0.$$

$$(1) \Rightarrow \mu_2 = 0 \otimes \mu_2 > 0.$$

subcase (c):
$$\mu_1 > 0, \mu_2 = 0$$

(2) $\Rightarrow x_1 = 0.$
(1) $\Rightarrow \mu_1 = 0 \otimes \mu_1 > 0.$
subcase (d): $\mu_1 > 0, \mu_2 > 0$
(2) $\Rightarrow x_1 = x_2 = 0 \otimes (5).$

$$\underline{\text{Case II}: \alpha = 1}$$

$$\underline{\text{subcase (a): } \mu_1 = 0, \mu_2 = 0}$$

$$(1) \Rightarrow \begin{cases} 1 + 2\lambda_1 x_1 = 0\\ 1 + 2\lambda_1 x_2 = 0. \end{cases}$$

$$\therefore \lambda_1 \neq 0.$$
Hence $x_1 = x_2 = -\frac{1}{2}\lambda_1.$

$$(5) \Rightarrow x_1^2 + x_1^2 = 1.$$

$$\therefore \left(\sqrt{\frac{1}{2}}, \sqrt{\frac{1}{2}}\right) \text{ is a candidate}$$

$$\text{but not } \left(-\sqrt{\frac{1}{2}}, -\sqrt{\frac{1}{2}}\right).$$

subcase (b):
$$\mu_1 = 0, \mu_2 > 0$$

(2) $\Rightarrow x_2 = 0.$
(5) $\Rightarrow x_1 = \pm 1.$
 \therefore (1,0) but not (-1,0) is a candidate.
subcase (c): $\mu_1 > 0, \mu_2 = 0$
 \therefore a candidate is (0,1) as before.
subcase (d): $\mu_1 > 0, \mu_2 > 0$
(2) $\Rightarrow x_1 = x_2 = 0 \otimes (5)$ as before.

Put in standard form.

$$\max f(x_1, x_2) = x_1 \cdot x_2$$

s.t.
$$g_1(x_1, x_2) = -x_1^2 - x_2^2 + 4 \ge 0$$

$$h_1(x_1, x_2) \ 2x_1 + x_2 - 2 = 0$$

(1)
$$\begin{cases} \alpha x_2 - 2\mu_1 x_1 + 2\lambda_1 = 0\\ \alpha x_1 - 2\mu_1 x_2 + \lambda_1 = 0 \end{cases}$$

(2)
$$\{ \mu_1 (-x_1^2 - x_2^2 + 4) = 0\\ (3) \ \alpha, \mu_1 \ge 0\\ (4) \ \alpha, \mu_1, \lambda_1 \text{ not all zero}\\ (5) \begin{cases} -x_1^2 - x_2^2 + 4 \ge 0\\ 2x_1 + x_2 - 2 = 0 \end{cases}$$

$$\underbrace{Case I : \alpha = 0}_{subcase (a) : \mu_1 = 0}_{(1) \Rightarrow \lambda_1 = 0 \otimes (4).}$$

$$\underline{subcase (b) : \mu_1 > 0}_{(2) \Rightarrow x_1^2 + x_2^2 = 4}_{(5) \Rightarrow 2x_1 + x_2 = 2 \Rightarrow x_2 = 2 - 2x_1}_{\therefore x_1^2 + (2 - 2x_1)^2 = 4.}$$

$$So (x_1, x_2) = (0, 2), (\frac{8}{5}, -\frac{6}{5}).$$
Both these satisfy (5) and are candidates.

$$\underline{\text{Case II}: \alpha = 1}$$

$$\underline{\text{subcase (a): } \mu_1 = 0}$$

$$(1) \Rightarrow \begin{cases} x_2 + 2\lambda_1 = 0 \\ x_1 + \lambda_1 = 0 \end{cases}$$

$$\therefore x_2 = 2x_1.$$

$$(5) \Rightarrow 2x_1 + x_2 = 2$$

$$\therefore x_1 = \frac{1}{2}, x_2 = 1.$$

$$(\frac{1}{2}, 1) \text{ satisfies (5).}$$

$$\frac{\text{subcase (b): } \mu_1 > 0}{(2) \Rightarrow x_1^2 + x_2^2 = 4}$$

(5) $\Rightarrow 2x_1 + x_2 = 2$
These have already been solved.
$$\frac{(x_1, x_2) \qquad f(x_1, x_2)}{(0, 2) \qquad 0}$$

 $\left(\frac{8}{5}, -\frac{6}{5}\right) \qquad -\frac{48}{25}$
max $\left(\frac{1}{2}, 1\right) \qquad \frac{1}{2}$

EXAMPLE

John drives to UTA every day. Having just completed a course in network analysis, John is able to determine the shortest route to work. Unfortunately, the selected route is heavily patrolled by police, and with all the fines paid for speeding, the shortest route may not be the best choice. John has thus decided to choose a route that maximizes the probability of not being stopped by police. The next figure shows the possible route between home and work, and the associated probabilities of not being stopped on each segment.

PROCEDURE

- 1. Find a path with positive capacity from source to sink. Put that much flow in it.
- 2. Reduce the forward capacity by the flow and increase the backward capacity by the same amount to allow the possibility of undoing what you did.
- 3. Repeat until this cannot be done. At that point you can find a cut with 0 remaining capacity from source side of cut to sink side.
- 4. For an example, see the link <u>http://optlab-</u> server.sce.carleton.ca/POAnimations2007/MaxFlow.html.

- **Definition**: A cut is a minimum set of branches whose breaking will separate the source from sink. Its cut value is the sum of the capacities of its branches from the source side of the cut to the sink side.
- Max. Flow Min. Cut Theorem: The maximum flow through the network equals the minimum cut value, where the cut value of a cut is the sum of capacities from source to sink direction.

	<u>Stage</u>	<u>State</u>	<u>time to best dstn.</u>	<u>rem. time</u>
	1	Ν	4 SF	4
		Μ	5 LA	5
		S	5 LA	5
_				
	2	Ν	6+4 ←	10
			7+5	
		Μ	5+4	9
			6+5	
			7+5	

<u>Stage</u>	<u>State</u>	time to dstn. rem. time
	S	6+5 ← 11 7+5
3	S	6+10 5+9 ← 14 5+11

KEY POINTS OF DYNAMIC PROGRAMMING

- 1) Work backwards.
- 2) Break a problem into subproblems.
- Bellman's principle of optimality: If a decision is to be made, make the best decision from here forward. Forget the past. Optimal subpolicies so obtained yield an optimal overall policy.

PROPERTIES OF SOLUTION PROCEDURE

- 1) A problem is divided into stages. A stage is where a decision is made.
- 2) DP transforms higher-dimensional problems into multiple lower-dimensional ones.
- 3) Each stage has a number of states associated with it. A state is "where you're at" in the stage.

The "curse of dimensionality" refers to the fact that one could be required to solve large numbers of problem with large numbers of states.

5) Given the current stage, the optimal policy for the remaining stages is independent of the policy adopted in previous stages.

PROBLEM FORMULATION AND NOTATION

- d_n= decision variable at stage n
- s_n = state variable at stage n
- r_n= r_n(s_n, d_n) = return at stage n in state s_n for decision d_n
- t_n= stage transformation s_{n-1}= t_n(s_n, d_n) at stage n

Example 1: Allocation Problem

David Goodfellow has 3 children whose ages are 2, 3, 4. One day after work he decides to treat his children by buying them some candy. Unfortunately he has only 3¢, so he buys them 4 jellybeans. He desires, however, to utilize these 4 jellybeans to the fullest. He knows from experience that none of his children will eat more than 2 jellybeans. Moreover, being an observant father and knowing his children's characteristics, he estimates the units of pleasure that 0, 1, 2 jellybeans will give each child. The following table gives these estimates :

Units of Pleasure							
jellybeans	Roosevelt	David Jr.	Meridith				
		(Davy)					
0	0	0	1				
1	1	2	3				
2	3	4	0				

Suppose David, Sr. wishes to maximize the total pleasure that the jellybeans will give his children. Using dynamic programming, allocate the jellybeans optimally among the 3 children.

Solution

stages: children states: # of jellybeans left decision variables: how many jellybeans to give the child at stage n returns: pleasure units (ahs!) at stage n

Stage 1				
<u>S₁</u>	<u>d₁</u>	<u>r</u> 1	<u>f₁(s₁) = max r₁</u>	
4	0	0		
	1	1		
	2 *	3	3	
3	0	0		
	1	1		
	2 *	3	3	
 2	0	0		
	1	1		
	2 *	3	3	
1	0	0		
	1 *	1	1	
 0	0 *	0	0	

			<u>Stage 2</u>	2		
<u>S₂</u>	\underline{d}_2	<u>r</u> 2	$s_1 = s_2 - d_2$	<u>r₂ + f₁(s₁)</u>	$f_{2}(s_{2})$	
4	0	0	4	0 + 3 = 3		
	1	2	3	2 + 3 = 5		
	2 *	4	2	4 + 3 = 7	7	
 3	0	0	3	0 + 3 = 3		
	1 *	2	2	2 + 3 = 5	5	
	2 *	4	1	4 + 1 = 5	5	
2	0	0	2	0 + 3 = 3		
—	1	2		2 + 1 = 3		
	2 *	4	0	4 + 0 = 4	4	

			<u>s</u>	tage (<u>3</u>			
<u>s₃</u> 4	<u>d₃</u> 0 * 1 * 2	<u>r</u> <u>3</u> 1 3 0		4 3	$\frac{r_3 + f_2(s_2)}{1 + 7 = 8}$ 3 + 5 = 8 0 + 4 = 4	8		
			<u>An</u>	<u>swer:</u>				
				<u>D</u> 2 1 2				

Example 2: Allocation Problem

	Data	
item i	Weight per unit	Profit per unit
A	250	\$ 3000
В	300	\$ 4000
С	400	\$ 5000
	1	-

St	age 1 - C	
<u>S₁</u>	$\underline{d}_{\underline{1}}$	$\underline{f_1(s_1)}$
0 ≤ s ₁ < 400 400 ≤ s ₁ < 800 800 ≤ s <u>1</u> ≤1000	0 1 2	0 5000 10,000

			<u>S</u>	tage 2 - B	
<u>S</u> 2	<u>d</u> ₂	<u>r</u> 2	<u> </u>	$r_2 + f_1(s_1)$	$f_2(s_2) = max [r_2 + f_1(s_1)]$
1000	0	0	1000	0 + 10,000	
	1	4000	700	4000 + 5000	
	2 *	8000	400	8000 + 5000	13,000
	3	12,000	100	12000 + 0	
750	0	0	750	0 + 5000	
	1 *	4000	450	4000 + 5000	9000
	2	8000	150	8000 + 0	
500	0 *	0	500	0 + 5000	5000
	1	4000	200	4000 + 0	
250	0 *	0	250	0 + 0	0
0	0 *	0	0	0 + 0	0

	Stage 3 - A								
<u>S</u> ₃	<u>d</u> ₃	<u>r</u> 3	<u>S2</u>	$r_3 + f_2(s_2)$	<u>f₃(s₃)=max [r₃+f₂(s₂)]</u>				
1000	0 * 1	3000	1000 750	0 + 13,00 3000 + 9000)				
	2 3 4	6000 9000 12,000		6000 + 5000 9000 + 0 12,000 + 0	J				
<u>Answer</u>	<u>:</u> :	<u>item</u> A	<u>optim</u>	<u>nal #</u> C					
		B C		2 1					

HOMEWORK 30

A student has final examinations in 3 courses X,Y, Z, each of which is a 3 credithour course. He has 12 hours available for study period. He feels that it would be best to break the 12 hours up into 3 blocks of 4 hours each and to devote each 4-hour block to one particular course. His estimates of his grades based on various numbers of hours devoted to studying each course are as follows. Using dynamic programming, allocate his study time optimally.

		Dat	ta	
		Number	of hours	
	0	4	8	12
Х	F	D	D	В
Course Y	D	D	В	А
Z	F	D	В	В

Example 3: Allocation Problem

Consider a system with 3 components in series of types A, B, and C respectively. If one component fails, the system fails. The reliability of the system (that is, the probability that all types of components work properly) can be improved by installing redundant components in parallel. Suppose that the unit cost and probability of failure of each type of component is given below.

<u>Type</u> A	Failure Probability 0.6	<u>v Cost</u> \$1
В	0.4	\$2
С	0.5	\$3
components. at least one programming number of co	t you have \$10 This answer inclue of each type. to determine omponents of each ze the reliability of th	des money for Use dynamic the optimum type to buy so

<i>s</i> ₁	d_1^{*}	$r_1 = (1 - 0.6^{d_1 + 1})$	$f_1(s_1) = \max(1 - 0.6^{d_1 + 1})$
4	4	$1 - 0.6^5 = 0.92$	0.92
3	3	$1 - 0.6^4 = 0.87$	0.87
2	2	$1-0.6^3=0.78$	0.78
1	1	$1-0.6^2=0.64$	0.64
0	0	$1-0.6^{1}=0.40$	0.40

s_2	d_2	$r_2 = 1 - 0.4^{d_2 + 1}$	$s_1 = s_2 - 2d_2$	$r_2 \times f_1(s_1)$	$f_2(s_2) = \max[r_2 \times f_1(s_1)]$
4	0	0.6	4	0.60 × .92=0.55	
	1 *	0.84	2	$0.84 \times 0.78 = 0.65$	0.65
	2	0.94	0	$0.94 \times 0.40 = 0.37$	
1	0 *	0.6	1	0.6 × 0.64=0.38	0.38
1	Ū	0.0	1	0.0 × 0.04–0.38	0.50
	-	3: type C		0.0 × 0.04-0.38	0.56
St	age	3: type C			
	age		$s_2 = s_3 - 3d_3$	$r_3 \times f_2(s_2)$ 0.5 × 0.65=0.325	$f_3(s_3) = \max[r_3 \times f_2(s_2)]$ 0.325

type	redundancies	total number
С	0	1
В	1	2
А	2	3

Example 4: Optimal Stopping Rule

An oral examination is designed as follows. There are 4 questions of which everyone is required to attempt the first question. If this first question is answered correctly, a student receives a numerical grade of 50 in the course. Otherwise, he receives a 0. For the remaining 3 questions, a student has the option of keeping his numerical grade from the previous question or attempting the next question for a higher grade. At each question, if the question is not answered correctly, the student receives a consolation grade.

The probabilities of <u>correctly</u> answering the three
optional questions, the grade received for a
correct response, and the consolation grade are
given below. Formulate an optimal policy for
taking this oral examination to maximize the
expected numerical grade you receive.

Optic	nal Question	Probability	Grade	Consolation Grade
α	(first)	0.6	65	40
β	(second)	0.5	80	55
γ	(third)	0.3	100	70

Question	Decision
α (first)	Go
β (second)	Go
γ (third)	Stop

Example 5: Traveling Salesman Problem

A businessman must travel to each of the following cities B, C, D, E, starting from A and ending in A. He can go through each city <u>only once</u> except that, of course, he ends in A after starting there. The "map" below indicates the possible routes that he could take, where the numbers represent distances. Find the optimal route that he should follow to minimize the total distance that he travels.

Solution

stages: cities (first three stops)

states: visited cities in order

decision variable: next city

returns: distance to next destination

Sta	ige 1		
<u>S</u> 1	<u>d</u> ₁	<u>r</u> 1	$\underline{f_1(s_1)}$
A, B, C	E*	15	15
A, B, D	E*	13	13
A, B, E	D*	10	10
	С	13	13
A, C, B	E*	13	13
A, C, D	E*	10	10
A, C, E	В	13	13
	D*	11	11
A, D, B	E*	12	12
A, D, C	E*	11	11
A, D, E	B*	10	10
	С	11	11

	Stage 2			
<u>S</u> 2	<u>d</u> ₂	$\underline{\mathbf{s}_1 = \mathbf{s}_2 \otimes \mathbf{d}_2}$	<u>r₂+ f₁(s₁)</u>	<u>f₂(s₂)</u>
Α, Β	C D	A,B,C A,B,D	3+15 =18 4+13 =17	
	E *	A,B,E	3+10 =13	13
A, C	B D * E	A,C,B A,C,D A,C,E	3+13 =16 2+10 =12 5+11 =16	12
A, D	B C * E	A,D,B A,D,C A,D,E	4+12 =16 2+11 =13 4+10 =14	13

		Stage	3	
<u>S₃</u>	<u>d</u> ₃	<u>s₂= s₃⊗d</u> ₃	$r_{3} + f_{2}(s_{2})$	<u>f₃(s₃)</u>
A	B * C * D	,	3 + 13 =16 4 + 12 =16 6 + 13 =19	16 16
		<u>Answer</u>	<u>:</u>	
		A		

MULTIPLE OBJECTIVE DECISION MAKING

GOAL PROGRAMMING

- Involves satisficing.
- Goals are ranked by order of importance.
- In preemptive goal programming, higher priority goal is assumed to be infinitely more important than a lower priority goal.
- Goal programming achieves as many higherpriority goals as possible, then attempts to get as close as possible to satisfying the remaining goals.

PRODUCT-MIX EXAMPLE

Faze Linear Company is a small manufacturer of high-fidelity components. It has facilities to produce only power amps, only preamps, or a combination of both. Due to limited resources, it is critical to produce appropriate quantities of power amps and/or preamps to maximize profit.

	selling price	profit
	per unit	per unit
power amps	\$799.95	\$200
preamps	\$1000	\$500

underutilized (ie., short of 81 hours)

Formulate the overtime goal as

 $0.5x_1 + x_2 + d_2^- - d_2^+ = 81.$

• Incorporating these goals as constraints in the LP formulation, we obtain the goal programming formulation.

$$\begin{aligned} & \text{Minimize P}_{1} d_{1}^{-} + P_{2} d_{2}^{+} \\ & \text{s.t.} \\ & \left\{ \begin{aligned} & x_{2} \leq 40 \text{ microchips} \\ & 1.2x_{1} + 4x_{2} \leq 240 \text{ assembly} \end{aligned} \right\} \text{ resource constraints} \\ & \left\{ \begin{aligned} & 200x_{1} + 500x_{2} + d_{1}^{-} - d_{1}^{+} = 40,000 \\ & 0.5x_{1} + x_{2} + d_{2}^{-} - d_{2}^{+} = 81 \end{aligned} \right\} \text{ goal constraints} \\ & x_{1}, x_{2}, d_{1}^{-}, d_{1}^{+}, d_{2}^{-}, d_{2}^{+} \geq 0 \end{aligned}$$

- The P₁ and P₂ symbols in the objective function reflect the fact that d₁⁻ and d₂⁺ represent priority 1 and 2 goals, respectively.
- Priorities of higher rank are infinitely more important than are those of a lower rank, i.e. P₁>>P₂
- In giving values to P₁ and P₂, take into account the relative size of the units of the variables.

HOMEWORK 31

Acme Appliance must determine how many washers and dryers should stocked. It costs Acme \$350 to purchase a washer and \$250 to purchase a dryer. A washer requires 3 sq. yd of storage space, and a dryer requires 3.5 sq. yd. The sale of a washer earns Highland a profit of \$200, and the sale of a dryer \$150. Acme has set the following goals (listed in order of importance):

- Goal 1: Highland should earn at least \$30,000 in profits from the sale of washers and dryers.
- Goal 2: Washers and dryers should not use up more than 400 sq. yd. of storage space.

Formulate a preemptive goal programming model for Acme to determine how many washers and dryers to order. Use D for the number of dryers and W for the number of washers as your variables. There should be only goal constraints in your formulation for this particular problem.

possible actions. For each a returns.	action, consider the follow
	Return for actions 1 and 2
Action 1	(1, 7)
Action 2	(2, 8)
Obviously, action 2 is bette objectives is better than the	

	ve two objective functions and
a decision involving two p action, consider the follow	oossible actions. For each
	Return for actions 1 and 2
Action 1	(8, 2)
Action 2	(9, 1)
Action 2	

Pareto Optimality – Mathematical Definition Let $f(x) = (f_1(x), ..., f_n(x))$. Then x^* is a Pareto maximum or an efficient point iff $f(x^*)$ is not dominated by any $\widehat{x} \in A$, i.e., there does not exist

an $\hat{x} \in A$ for which $f_i(x^*) \leq f_i(\hat{x}), \forall i = 1, ..., n$ and there does not exist *j* such that $f_j(x^*) < f_j(\hat{x})$.

Moreover, let $\alpha_i > 0, i = 1, ..., n$. If x^* solves (S), then x^* is an efficient point for (P).

HOMEWORK 32

Consider the Pareto optimization problem

Vmax $(2x^2 - 3y^2, 25-5y)$ x,y s.t. $0 \le x \le 10$ $0 \le y \le 5$,

where the first objective function $f_1(x,y) = 2x^2 - 3y^2$ represents profit in hundreds of dollars employee per day and the second objective function $f_2(x,y) = 25-5y$ represents happiness in the average number of smiles per employee per work day. Is (10,5) an efficient point for this problem? Is (0,0)? Show your work.

Pareto Optimality – Example 2

Example: Profit Pollution Trade-Off Curve

Problem Statement

Chemco is considering producing three products. The per-unit contribution to profit, labor requirements, raw material used per unit produced, and pollution produced per unit of product are given below. Currently, 1300 labor hours and 1000 units of raw material are available. Chemco's two objectives are to maximize profit and minimize pollution produced. Graph the trade-off curve for this problem.

Product		
1	2	3
10	9	8
4	3	2
3	2	2
10	6	3
	4 3	1 2 10 9 4 3 3 2

Pareto Optimality – Example 2 Example: Profit Pollution Trade-Off Curve **Problem Statement** Chemco is considering producing three products. The per-unit contribution to profit, labor requirements, raw material used per unit produced, and pollution produced per unit of product are given below. Currently, 1300 labor hours and 1000 units of raw material are available. Chemco's two objectives are to maximize profit and minimize pollution produced. Graph the trade-off curve for this problem. Product 2 1 3 Profit (\$) 10 9 8 Labor (hours) 3 4 2 Raw material (units) 3 2 2 Pollution (units) 10 6 3

Pareto Optimality – Example 2

Solution (Continued)

Let PROF be the (unique) optimal z-value when this LP is solved. For each value of POLL, the point (POLL, PROF) will be on the trade-off curve. To see this, note that any point (POLL', PROF') dominating (POLL, PROF) must have PROF' >= PROF. The fact that (POLL, PROF) is the unique solution to LP 2 implies that all feasible points (with the exception of [POLL, PROF]) having PROF'>=PROF must have POLL'>POLL.

This means that (POLL, PROF) cannot be dominated, so it is on the trade-off curve. Choosing any value of POLL> 2400 yields no new points on the trade-off curve. Thus, as our next step we choose POLL = 2300. Then using TORA, we can get the optimal z-value of 4266.67 and $10x_1 + 6x_2 + 3x_3 = 2300$. Thus, the point (2300, 4266.67) is on the trade-off curve. Next, we change POLL to 2200 and obtain the point (2200, 4233.33) on the trade-off curve. Continuing in this fashion, setting POLL = 2100, 2000, 1900,0, we obtain the trade-off curve between profit and pollution give as follows:

