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Abstract. As Electroencephalography (EEG) is a non-invasive brain imaging
technique that records the electric field on the scalp instead of direct measur-
ing activities of brain voxels on the cortex, many approaches were proposed to
estimate the activated sources due to its significance in neuroscience research
and clinical applications. However, since most part of the brain activity is com-
posed of the spontaneous neural activities or non-task related activations, true
task relevant activation sources can be very challenging to be discovered given
strong background signals. For decades, the EEG source imaging problem was
solved in an unsupervised way without taking into consideration the label infor-
mation that representing different brain states (e.g. happiness, sadness, and sur-
prise). We showed in this research that by leveraging label information, the task
related discriminative sources can be much better retrieved. A novel model for
solving EEG inverse problem called Graph Regularized Discriminative Source
Imaging (GRDSI) was proposed, which aims to explicitly extract the discrim-
inative sources by implicitly coding the label information into the graph regu-
larization term. The proposed model is capable of estimating the discriminative
brain sources under different brain states and encouraging intra-class consistency
simultaneously. Simulation results show the effectiveness of our proposed frame-
work in retrieving the discriminative sources.
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1 Introduction

Electroencephalography (EEG) is a non-invasive brain imaging technique that records
the electric field on the scalp generated by the synchronous activation of neuronal pop-
ulations. It has been previously estimated that if as few as one in a thousand synapses
become activated simultaneously in a region of about 40 square millimeters of cortex,
the generated signal can be detected and recorded by EEG electrodes [8][14]. Due to
its low cost and exceptional temporal resolution, EEG has become one of the most pop-
ular brain imaging tools. Compared to other functional neuroimaging techniques such
as functional magnetic resonance imaging (fMRI) and positron emission tomography
(PET), EEG is a direct measurement of real-time electrical neural activities, so EEG is
more suitable to answer exactly when different brain regions are activated and in what
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processing steps each region is involved [19]. PET and fMRI, by contrast, measure brain
activity indirectly through associated metabolic or cerebrovascular changes which are
slow and time-delayed [11][14]. To infer the activated brain sources from the recorded
EEG data is called inverse problem. Precise localization of neuronal firing pattern in-
side the brain can offer an insightful understanding of how the brain is functioning under
certain cognitive and motion tasks. We also argue that source reconstruction or solving
the inverse problem is the first and primary step for connectivity analysis of the brain,
precise inference of time course of brain sources is required in order to build the brain
connectivity network. The latter step is to analyze the brain network using complex
networks [6][20][24] characteristics measurement, as we saw a shift in neuroscience
community from traditional “segregation” perspective to “integration” perspective [4]
where the functional and effective connectivity between different regions of brains are
intensively studied [12][18] in recent years.
The pyramidal neurons which are believed to account for most of the EEG signal pop-
ulate the entire cortical gray matter [2], and outnumber the available sensors by several
orders of magnitude, making the inverse problem ill-posed. In order to solve the in-
verse problem, different priors or assumptions have to be imposed to obtain a unique
solution. The most traditionally used priors are based on minimum power, leading to
what is known as the minimum norm estimate (MNE) inverse solver [9], or minimum
magnitude, termed as minimum current estimate (MCE) [23], leading to a least absolute
shrinkage and selection operator (LASSO) formulation. Other assumptions or priors are
presented with different inverse algorithms, such as, low-resolution brain electromag-
netic tomography (LORETA) [21] and standardized LORETA [22], which enforces spa-
tial smoothness of the source located on neighboring voxels; Bernoulli-Laplace priors,
which introduced `0 + `1 norm in a Bayesian framework [3]; Mixed Norm Estimates
(MxNE), which imposes sparsity over space and smoothness over time using `1,2-norm
regularization [5]; Solution Space Sparse Coding Optimization (3SCO) [26], which is
based on particle swarm optimization and an `0 constraint; graph Fractional-Order To-
tal Variation (gFOTV) [16], which impose sparsity of the spatial fractional derivatives
so that it locates source peaks by providing the freedom of choosing smoothness order.
As summarized above, numerous algorithms that were based on different source con-
figuration assumptions or prior knowledge were presented to solve the inverse problem.
Traditional algorithms solve the EEG inverse problem independently for different brain
states without leveraging the label information, that will make it hard to compare the
reconstructed sources under different brain states due to its low SNR (Signal-to-Noise
Ratio) of the EEG signal. To the best of our knowledge, few researchers come up with
a model that can integrate EEG inverse problem with label information (e.g. happiness,
sadness, and surprise) to find task related discriminative sources except our previous
work [17]. To explicitly extract factual sources and eliminate the spurious ones, we
proposed the graph regularized version of discriminative source reconstruction that has
the capability of promoting intra-class consistency, and we tested it on synthetic data
and illustrated its effectiveness in discovering task related sources. The contributions of
this paper are summarized as the following: (1) We propose to use label information
to solve the EEG inverse problem in a supervised way. (2) A graph regularized EEG
inverse model is presented that can promote intra-class consistency (3) Motivated by
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the “cross-and-bouquet” model [25], a Voting Orthogonal Matching Pursuit algorithm
is proposed to decompose the common sources.

2 The Inverse Problem

Under the quasi-static approximation of Maxwell’s equations, the EEG signal measure-
ments X can be described as the following linear function of current sources S:

X = LS + E, (1)

where X ∈ RNc×Nt is the EEG data measured at a set of Nc electrodes for Nt time
points, L ∈ RNc×Nd is a wide matrix called lead field matrix that maps the brain source
signal to sensors on the scalp, each column of L represents the activation pattern of a
particular brain source to the EEG electrodes, S ∈ RNd×Nt represents the correspond-
ing neural electric field in Nd source locations for Nt time points. E ∈ RNc×Nt is
additive noise. An estimate of S can be found by minimizing the following cost func-
tion, which is composed of a data fidelity term and a regularization term:

argmin
S
‖X − LS‖2F + λΘ(S), (2)

where ‖·‖F is the Frobenius Norm. The regularization term Θ(S) can be used to guar-
antee smooth source configurations temporally or spatially and enforces neurophysio-
logically plausible solutions or to guarantee sparsity in source solution. For example, to
restrict the total number of activated voxels to be less than or equal to k, the constraint
‖si‖0 6 k can be used. Even though `0-norm is the best intuitive formulation to restrict
number of activated sources, it’s a common practice to use approximated norm such as
`1 to avoid the problem being NP-hard when solving EEG inverse problem. For the ith
time point, the `1 regularized formulation is given below:

〈si 〉 = argmin
si
‖xi − Lsi‖22 + γ‖si‖1. (3)

Given the EEG recordings at a time point, which is denoted as ith column xi of X
matrix, we want to represent the signal with minimum error by trying to find the best
linear representation from activation patterns (atoms) in the over-complete dictionary L
[17]. The solution si is the sparse coding for the xi in the dictionary L, the non-zero
entries in si corresponding to a column in the dictionary matrixL represent the activated
regions inside the brain [17]. Solving Problem (3) is relatively a mature technique with
many existing algorithms, such as Homotopy, DALM, PDIPA, FISTA, among others
listed in Ref.[27].

3 Proposed Framework

3.1 Graph Regularized Discriminative Source Imaging

Due to the fact that EEG signal is non-stationary and typically the SNR is very low,
it’s important to get consistent inverse solution under the same brain status and elimi-
nate the spurious sources that are usually not consistent within the same class. Inspired
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by the successful applications of graph regularization in computer vision community
[1][7], the proposed model of retrieving task related discriminative source is presented,
which is termed as Graph Regularized Discriminative Source Imaging (GRDSI), and
comprises the data fidelity term and label guided graph regularization term:

〈S 〉 = argmin
S
‖X − LS‖2F + γ‖S‖1,1 +

β

2

N∑
i,j=1

‖si − sj‖22Mij , (4)

where the first term is the fidelity term, the second term is the cost of sparse coding,
‖·‖1,1 is the `1 norm notation for a matrix, equal to the sum of the absolute value of all
elements in a matrix. The third term is the graph regularization term that requires all the
sparse coder within the same category remains similar pattern while making the sparse
representation for different class distinct from each other. The definition of M matrix
can be written as:

Mij =

{
1, if (si,sj) belong to the same class
0, if (si,sj) belong to different classes

The goal of this formulation is to find discriminative sources while maintaining the
robustness of in-class reconstructed sources.
Remarks on design of M matrix
When (si, sj) belong to the same class, design the value of Mij to be positive will
add penalty when the intrinsic geometry (si, sj) is different, thus promoting intra-class
consistency of the source and reduce the spurious sources estimated at each time point.
The magnitude ofMij can also be adjusted to tailor the relative weight between in-class
consistency.

Define D as a diagonal matrix whose entries are column or row sums of the sym-
metric matrix M , Dii =

∑
j Mij , define G = D−M , G is called graph Laplacian [1],

The third term of Eq.4 can be further derived in the following way:

N∑
i,j=1

‖si − sj‖22Mij =

N∑
i,j=1

(si
T si + sj

T sj − 2si
T sj)Mij = 2tr(STGS) (5)

As a result, Eq.4 is further derived as:

〈S 〉 = argmin
S
‖X − LS‖2F + γ‖S‖1,1 + β(Tr(STGS)) (6)

Eq.6 can be efficiently solved using feature-sign search algorithm due to limited space,
the readers are encouraged to refer to Ref.[1][15].

3.2 Common Sources Decomposition with Voting Othogonal Matching
Pursue(VOMP)

Under the assumption of strong common spontaneous source activation pattern, the con-
tribution of discriminative sources to the EEG recorded data is relatively small, making
the solution space for different classes highly correlated and difficult to find discrimi-
native sources. As a result, the convex hull spanned by all the source configuration is
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limited to a tiny portion of the space [25]. In order to address that, we use the idea of
“cross-and-bouquet” model [25] and come up with a useful step that is to decompose of
X to find the common sources shared by different classes. Eq.(7) describes the common
source decomposition problem.

〈Sc 〉 = argmin
Wc

‖X − LSc‖2F

s.t. ‖si‖0 6 Tmax, i = 1, 2, ...Nd; si = sj , (i = 1, 2, ...Nd, j = 1, 2, ...Nd).

(7)

The Voting Othogonal Matching Pursue (VOMP) is proposed and described in Algo-
rithm (1). The aim is to recover the common sources across all classes. The core part
of VOMP is Othogonal Matching Pursue (OMP) which is an very efficient algorithm.
After the decomposition of common source, its contribution to the EEG data X is
also removed. The new EEG data after removal of the common source is written as
Xnew = X − LSc. In the following part, we still use X to represent Xnew when no
confusion is caused.

Based on the discussion above, the proposed framework to solve Problem 6 is sum-
marized in Algorithm (2) and illustrated in Fig.1.

Fig. 1: Procedures of our framework: After gathering labeled EEG recorded data, the
brain model is constructed using finite element method (BEM) based on MRI images,
the VOMP algorithm is used to decompose the primary common source starting with a
high minimum voting percentage, and then solve it using feature-sign search algorithm,
the last step is to map discriminative sources to the cortex.

4 Numerical Results

We used a recently developed realistic head model called ICBM-NY or “New York
Head” [13]. The dimension of lead field matrix we are using is 108× 2004, represent-
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Algorithm 1 Decomposition of Non-discriminative Sources with VOMP
INPUT: Lead field matrix L, EEG data X , maximum number of common sources Tmax, mini-
mum voting acceptance threshold p
OUTPUT: Sc, result of removed common sources Xnew

Initialization: T ← 1, Ω = ∅, R = X , Rnew = X , S′ = 0

while Stopping criteria is not met do
for i ∈ 1, ..., Nt do

si ← OMP(L, xi, 1)
qi ← nonzero index of si

end for
qbest ← most frequent qi
if T = Tmax or frequency of f(qbest) < p then

break;
else

Ω ← Ω ∪ qbest ; L
′
= (L:,i|i ∈ Ω) ; S

′
← pinv(L′)X; S

′
← mean(S

′
); Rnew ←

X − L′S′

end if
for k ∈ 1, ..., C do

Rk
new = {Rnew(i)|i ∈ class k} ;

Rk = {R(i)|i ∈ class k}
end for
if
∥∥Rk

new

∥∥ < ∥∥Rk
∥∥ for k ∈ 1, ..., C then

continue;
else break;
end if
T ← T + 1; R← Rnew

end while
Xnew = Rnew; Sc = S′

return Sc, Xnew

ing 108 channels and 2004 voxels. We also assume that source orientation is perpen-
dicular to the cortex surface. In each simulation, noises originate from sensor level and
cortex voxel level both contributed to the recorded EEG data. The SNR is calculated as
SNR = 20 log10

‖S‖2
‖N‖2

.
We show the effectiveness of the graph regularization term in reconstructing the

discriminative sources by comparing it with the other eight benchmark algorithms, in-
cluding ElasticNet, Homotopy, DALM, PDIPA, FISTA, sLORETA, MNE. The former
6 algorithms are compared in image reconstruction applications and can be referred to
Ref.[27] for details. We designed the spontaneous common sources with a magnitude
of 0.8 with standard deviation to be 0.1 and task related discriminative source with a
magnitude of 0.2 with a standard deviation of 0.05 located in different Region Of In-
terest (ROI)s from the common sources. The ROI we used here are defined in Ref.[10].
We sampled 200 time points for each class and did the experiment 5 times to get the
average accuracy of the reconstructed source. For the GRDSI parameter, we set β to
be 0.05 and α to be 0.06; The noise matrix is designed to affect the EEG recording
together with the true source signal. For each time point, 3 random voxels are corrupted
randomly with the average value being 0.2, 0.4, 0.6 and variance being 0.05 based on
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Algorithm 2 Proposed framework of solving Problem 6
INPUT: Lead field matrix L, preprocessed EEG signal matrix X , label matrix H
OUTPUT: Discriminative source Sd

Initialization: T ← 1, Ω = ∅, R = X , Rnew = X , S′ = 0

while Stoping criteria not met do
(1) Using VOMP algorithm for common source decomposition;
(2) Solve the following sparse coding problem for < s(i) >= argmin

s(i)
L(si) + γ‖si‖1

using the feature-sign search algorithm [15] ;
(3) Adjust the voting threshold p;

end while

different SNR design. All computations were conducted on a 64–bit Linux workstation
with 3.00 GHz i7-5960x CPU and memory of 64 GB.

The reconstruction performance of the proposed method as well as the benchmark
methods based on 150 experiments are summarized in Table 1. All of the values in Ta-
ble 1, except the Time column (in seconds) represents distance in (mm) from ground
true source to the reconstructed source calculated from shortest path along cortex sur-
faces. PSE represents primary source error, which is the distance of reconstructed pri-
mary source to the ground truth primary source. PSE measures the capability of each
algorithm to reconstruct the common sources. When the reconstructed location is in a
different hemisphere from the ground truth, there is no path connecting those two vox-
els, so we mark the distance to be 250 mm. EC1 represents error for class 1, which
is the distance of the reconstructed discriminative source to the ground truth. EC2 and
EC3 are similarly defined.

Fig. 2: Ground truth for all 3 classes

To illustrate the effect of the proposed framework, the ground truth of the acti-
vated pattern is given in Fig.2, with the reconstructed source by WMN, sLORETA and
our method given in Fig.3–5. We can see from Table 1 and the Fig.3–5 that when the
SNR is large, all the algorithms performs well in reconstructing primary source, as for
the discriminative sources for different classes, our method can achieve almost perfect
reconstruction. All other algorithms’ performances are also acceptable when SNR is
large, except for sLORETA, MNE and ElasticNet. When we increase the noise, all of
the algorithms can still achieve high accuracy in finding the primary source. For the
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discriminative source, our algorithm performs much better. We also validated that, to
solve a pure `1 EEG inverse problem, the Homotopy algorithm performs better in most
cases than other algorithms in the EEG inverse problem, which is in line with Ref.[27].

Table 1: Reconstruction Accuracy Summary
SNR = 10 SNR = 22

Methods Time PSE EC1 EC2 EC3 Time PSE EC1 EC2 EC3
ElasticNet 0.001 43.4 142.3 159.6 159.2 0.001 8.87 172.5 195.0 13.0
Homotopy 0.12 3.43 53.2 42.5 40.8 0.09 0 0.28 0.70 8.00

DALM 0.07 4.59 53.0 43.1 39.6 0.08 0 0.28 1.73 7.98
PDIPA 0.29 3.43 53.4 45.0 40.4 0.26 0 0.28 0.63 7.98
L1LS 3.89 0.69 51.6 67.4 37.1 3.92 0.069 0 0 4.36
FISTA 0.95 0.63 61.0 95.2 47.6 0.96 40.1 66.1 73.5 54.5

sLORETA 0.015 10.2 131.7 178.2 142.8 0.02 2.62 194.1 164.2 123.5
MNE 3e-5 29.3 131.8 157.7 131.7 3e-5 4.30 119.8 136.2 113.5

GRDSI (Proposed) 0.15 1.85 14.4 4.13 3.67 0.10 0 0 0 2.12

5 Conclusion

In this paper, we proposed to use label information to retrieve discriminative sources
corresponding to different brain status. A graph regularized EEG inverse formulation
that implicitly uses the label information was presented that can boost the intra-class
consistency and eliminate spurious sources. We bring up the idea of cross-and-bouquet
in the inverse problem and present an efficient algorithm to address the high coherence
of the reconstructed signals given high background spontaneous source signal. An effi-
cient algorithm called feature-sign search algorithm is used to solve the GRDSI prob-
lem. We illustrated the superior of our algorithm in retrieving discriminative sources
while traditional algorithms failed given certain level of noises.
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2. Castaño-Candamil, S., Höhne, J., Martı́nez-Vargas, J.D., An, X.W., Castellanos-Domı́nguez,
G., Haufe, S.: Solving the eeg inverse problem based on space–time–frequency structured
sparsity constraints. NeuroImage 118, 598–612 (2015)

3. Costa, F., Batatia, H., Chaari, L., Tourneret, J.Y.: Sparse EEG source localization using
bernoulli laplacian priors. IEEE Transactions on Biomedical Engineering 62(12), 2888–2898
(2015)

4. Deco, G., Tononi, G., Boly, M., Kringelbach, M.L.: Rethinking segregation and integra-
tion: contributions of whole-brain modelling. Nature Reviews Neuroscience 16(7), 430–439
(2015)
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14. Lamus, C., Hämäläinen, M.S., Temereanca, S., Brown, E.N., Purdon, P.L.: A spatiotemporal
dynamic solution to the meg inverse problem: An empirical bayes approach. arXiv preprint
arXiv:1511.05056 (2015)

15. Lee, H., Battle, A., Raina, R., Ng, A.Y.: Efficient sparse coding algorithms. In: Advances in
neural information processing systems. pp. 801–808 (2006)

16. Li, Y., Qin, J., Hsin, Y.L., Osher, S., Liu, W.: s-SMOOTH: Sparsity and smoothness enhanced
EEG brain tomography. Frontiers in Neuroscience 10, 543 (2016)



10 Feng Liu, Rahilsadat Hosseini, Jay Rosenberger, Shouyi Wang, and Jianzhong Su

Fig. 4: sLORETA inverse solution: The above row is the sLORETA solution for class 1;
Class 2 and class 3 is illustrated in the middle and bottom row. sLORETA can success-
fully reconstruct the primary source, however the secondary source is not successfully
reconstructed. Compared to the solution of WMN, sLORETA can suppress the numer-
ous spurious sources with small magnitude.

17. Liu, F., Wang, S., Rosenberger, J., Su, J., Liu, H.: A sparse dictionary learning framework to
discover discriminative source activations in EEG brain mapping. In: AAAI. pp. 1431–1437
(2017)

18. Liu, F., Xiang, W., Wang, S., Lega, B.: Prediction of seizure spread network via sparse rep-
resentations of overcomplete dictionaries. In: International Conference on Brain and Health
Informatics. pp. 262–273. Springer (2016)

19. Michel, C.M., Murray, M.M., Lantz, G., Gonzalez, S., Spinelli, L., de Peralta, R.G.: EEG
source imaging. Clinical neurophysiology 115(10), 2195–2222 (2004)

20. Newman, M.E.: The structure and function of complex networks. SIAM review 45(2), 167–
256 (2003)

21. Pascual-Marqui, R.D., Lehmann, D., Koenig, T., Kochi, K., Merlo, M.C., Hell, D., Koukkou,
M.: Low resolution brain electromagnetic tomography (LORETA) functional imaging in
acute, neuroleptic-naive, first-episode, productive schizophrenia. Psychiatry Research: Neu-
roimaging 90(3), 169–179 (1999)

22. Pascual-Marqui, R.D., et al.: Standardized low-resolution brain electromagnetic tomography
(sloreta): technical details. Methods Find Exp Clin Pharmacol 24(Suppl D), 5–12 (2002)
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