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Abstract

Electroencephalography (EEG) source analysis is one of the
most important noninvasive human brain imaging tools that
provides millisecond temporal accuracy. However, discover-
ing essential activated brain sources associated with different
brain status is still a challenging problem. In this study, we
propose for the first time that the ill-posed EEG inverse prob-
lem can be formulated and solved as a sparse over-complete
dictionary learning problem. In particular, a novel supervised
sparse dictionary learning framework was developed for EEG
source reconstruction. A revised version of discriminative
K-SVD (DK-SVD) algorithm is exploited to solve the for-
mulated supervised dictionary learning problem. As the pro-
posed learning framework incorporated the EEG label infor-
mation of different brain status, it is capable of learning a
sparse representation that reveal the most discriminative brain
activity sources among different brain states. Compared to
the state-of-the-art EEG source analysis methods, proposed
sparse dictionary learning framework achieved significant su-
perior performance in both computing speed and accuracy for
the challenging EEG source reconstruction problem through
extensive numerical experiments. More importantly, the ex-
perimental results also validated that the proposed sparse
learning framework is effective to discover the discriminative
task-related brain activation sources, which shows the poten-
tial to advance the high resolution EEG source analysis for
real-time non-invasive brain imaging research.

Introduction

In the past few decades, numerous noninvasive measure-
ments of brain activity have been proposed, implemented
and applied in clinical treatment and scientific research
communities. One of the most popular techniques is elec-
troencephalography (EEG) for its advantages of low cost,
portable and high temporal resolution. EEG signals mea-
sure the electrical voltage on a variety of locations on the
scalp. The electrical potentials on the scalp are superimposi-
tion of electric activity of neurons inside the brain and sev-
eral types of physiological and non-physiological artifacts
(Haufe 2011; Haufe et al. 2013). To be specific, the EEG
signal arises as a result of synchronous intracellular cur-
rent flows from the depolarized membranes of apical den-
drite and non-excited cell soma and basal dendrites (Baillet,
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Mosher, and Leahy 2001). Those above currents (sources)
propagate through the conductive medium, which is approx-
imated with the conductivity properties of different tissues
overlaying each other, to the scalp which is measured by
EEG electrodes.

To infer the brain sources from the scalp recorded EEG
signals belongs to the class of inverse problem. Precise
localization of neuronal activity inside the brain can of-
fer an insightful understanding of how brain is function-
ing given certain cognitive and motion tasks. Recent years
have witnessed a shift in neuroscience community from
traditional “segregation” perspective to “integration” per-
spective in which the functional and effective connectiv-
ity between different regions of brains (Haufe 2011; Hipp
et al. 2012; Liu et al. 2016) are investigated using com-
plex network characteristics measurement (Watts and Stro-
gatz 1998; Barabási and Albert 1999; Guan et al. 2012;
Newman 2003). Connectivity between different parcella-
tions of brain is established by measuring the similarity of
reconstructed sources. As the source reconstruction or solv-
ing the inverse problem is tenably the first and primary step
for connectivity analysis of the brain (Sockeel et al. 2016;
Ma et al. 2016), precise localization of sources is required in
order to gain solids result using complex network measure-
ment in the latter steps.

In this paper, we aim to calculate the discriminative
sources to facilitate the understanding of brain mechanism
under different cognitive tasks or different neurological dis-
orders by incorporating a simple linear classifier which can
be interpreted as discriminative filters for different brain pat-
terns. The label information is leveraged to get a consistent
and robust solution to the inverse problem.

Related Work

On contrary to forward problem, which consists of modeling
the contribution of each voxel to the EEG sensors by solving
Maxwell’s equation, the inverse problem is ill-posed since
the number of interior brain voxels taken into account is far
greater than the number of sensors outside the scalp. To pre-
cisely estimate the responsible sources of EEG activity from
at least several thousands of potential contributing locations
which is evenly distributed across the brain requires prior
knowledge. Given different neurophysiological assumptions
or prior beliefs on the structure of possible source configu-
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rations, the goal is to find a unique and stable solution that
best explain the signal we observed in the EEG channels.
The most commonly used priors in EEG source reconstruc-
tion are based on the �2 norm, leading to what is known as
the minimum norm (MN) inverse solver (Hämäläinen and Il-
moniemi 1994). This MN inverse solver leads to a minimum
norm estimates (MNE) of the sources. However, �2-based
solvers suffer from several limitations, e.g. the solution in-
side the brain will be diffuse.

Other assumption priors are also presented with differ-
ent methodologies, such as, Multiple Signal classifier (MU-
SIC) and Recursively applied and projected MUSIC (RAP
MUSIC) (Mosher and Leahy 1998)(Mosher and Leahy
1999) which adopted spatio-temporal independent topogra-
phies (IT) model with recursive subspace projection; low
resolution brain electromagnetic tomography (LORETA)
(Pascual-Marqui et al. 2002) and standardized LORETA
(Pascual-Marqui and others 2002) which enforces spatial
smoothness of the source located on neighboring voxels, fo-
cal under determined system solution (FOCUSS) (Gorod-
nitsky, George, and Rao 1995) which combines the advan-
tages of distributed dipole modeling method and linear es-
timation method by allowing current sources to take arbi-
trary shape with high resolution; weighted minimum norm-
LORETA (WMN-LORETA) (Song, Zhuang, and Wu 2006)
which makes compensation to the deeper sources; invariance
with respect to the orientation of the coordinate system, and
b) a preference for sparsity of the solutions and their spa-
tial derivatives; Focal Vector Field Reconstruction (FVR),
which combined sparsity and rotational invariance source
reconstruction (Haufe et al. 2008); Mixed Norm Estimates
(MxNE), which imposes sparsity over space and smoothness
over time using �1,2-norm regularization (Gramfort, Kowal-
ski, and Hämäläinen 2012), etc.

As summarized above, based on different assumptions,
different algorithms solving the inverse problem were pro-
posed, implemented and validated. However, to the best of
our knowledge, there is no literature addressing simultane-
ously estimation of brain sources and distinguishing differ-
ent sources given different status of the brain. We propose a
new supervised formulation of the inverse problem and with
efficient algorithms to solve it. The new formulation is com-
posed of two ingredients, source reconstruction and super-
vised source classification. The contributions of this paper is
fourfold, including:

1. First proposed a model with discriminative power to solve
EEG inverse problem.

2. First described the EEG inverse problem as an overcom-
plete dictionary learning problem and show the opportu-
nities of using algorithms from compressive sensing and
computer vision community.

3. Proposed revised version of K-SVD algorithm to solve the
optimization model good accuracy.

4. Employed the most recently developed high accurate head
model rather than approximated head model compared to
previous studies.

The structure of the rest paper is as follows: In Section 2, the
problem formulation is given. In Section 3, the optimization

method is proposed. In Section 4, the numerical experiments
and the effectiveness of our proposed framework, conclu-
sions and future work are given in Section 5.

Discriminative Source Reconstruction
In this section, we first briefly review the inverse problem,
and then the proposed model in form of discriminative dic-
tionary learning is described, which comprises the source re-
construction term and label guided discriminative term. The
motivation of such a discriminative inverse model will be
discussed in details.

The Inverse Problem

The electromagnetic field measured by EEG can be de-
scribed as the following linear model:

X = LS + ε (1)
where X ∈ R

Nc×Nt is the EEG data measured at a set of
Nc electrodes for Nt time points, L ∈ R

Nc×Nd is the lead
field matrix which maps the source signal to sensors on the
scalp, each column of L represents the activation pattern of
a particular source to the EEG electrodes, S ∈ R

Nd×Nt rep-
resents the corresponding driving potential in Nd sources lo-
cations for all the Nt time points. ε is the noise. Generally,
an estimate of S can be found by minimizing the following
cost function, which is composed of a quadratic error and a
regularization term:

argmin
S

‖X − LS‖2F + λΘ(S) (2)

The penalty function Θ(S) is to discourage unnecessary
complicated source configurations and enforces neurophys-
iologically plausible solutions, and ‖·‖F is the Frobenius
Norm. The regularization term take the form of �2, �1 or
mixed norm, spatially smooth formulation as in LORETA
estimation or spatially sparse formulation with least abso-
lute shrinkage and selection operator estimate. For example,
to restrict the total number of activated sources less than T ,
the following �0-Norm formulation can be used:

argmin
S

‖X − LS‖2F s.t. ‖si‖0 � T, (3)

As is well know that �0-norm is the best intuitive formula-
tion to restrict number of activated sources, almost of neuro-
science researchers, if not all, for solving EEG inverse prob-
lem use approximated norm such as �1 to avoid the solution
being NP-hard. For the ith time point, the �1 regularized for-
mulation is given below:

si = s∗(xi, L) = argmin
x

‖xi − Lsi‖22 + γ‖si‖1 (4)

The ill-posed problem of Eqn.1 originates from the fact that
L is a matrix with column number far much greater than the
row number. We view the L matrix as a dictionary, and each
column in L is an atom of the dictionary. Given the EEG
recordings at a time point, which is denoted as ith column
xi of X matrix, we want to represent the signal with min-
imum error by trying to find the best linear representation
from activation patterns (atoms) in the over-complete dic-
tionary L. The solution si is the sparse coding for the xi in
the dictionary L, the non-zero entries in si corresponding to
a column in the dictionary matrix L represent the activated
regions inside the brain.
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Dictionary Learning Fused with Label Information

As the brain has different emotion/task related states, clas-
sification of different status is important in Brain Computer
Interface(BCI) application, also it helps us understand the
mechanism how brain is functioning. Mapping the EEG to
the source give us a direct sense of how the sources are
evoked and evolved in different states. The motivation of
the supervised inverse problem formulation can be explained
using a simple demonstrative example as it’s illustrates in
Fig.1. The electrical potential mentioned at x1 can be for-
mulated as x1 = a1s1 + a2s2 + a3s3 + ε and the same case
for x2 channels, where ai(i = 1, 2, 3) describe the conduc-
tivity from for electricity traveling from site si to channel
x1. According previous studies (Raichle 2006), only a small
portion of electrical energy are task related and it’s reason-
able to assume that s1 represents to the non-task resting state
source and contribute most of the potential measured in sen-
sors. Assume s2 is activated when performing task A and s3
is related to task B. Under the condition of low signal noise
ratio (SNR), the reconstructed source tends to be only s1
without explicitly using the supervising label. Here we lever-
age the label information explicitly in the hope of successful
reconstruction of the discriminative source s2 and s3. Here

Figure 1: source to electrode

we present a new framework that can infer the source signal
guided by the label information. A classification of differ-
ent brain status based on the sparse coder si is obtained by
determining its model parameters W , where

W = argmin
W

Σ
i
�{hi, f(si,W )}+ λ ‖W‖2F (5)

where �{·} is the loss function for classification accuracy
based on the ground truth and classification model f(·),
and hi is the label vector where non-zero entry denotes the
corresponding class. Traditional procedure is first solve the
pure inverse problem ignoring the supervising label and then
train the sparse coding si with classification model. Sepa-
rating the inverse problem and classification problem can

be misleading, we argue that since we have the brain sta-
tus information, it’s better to use it as a label to make the
inverse solution exhibiting discriminative capability. With
this thought and inspired by literatures in computer vision
community (Jiang, Lin, and Davis 2013; Yang et al. 2014;
Zhang and Li 2010; Pham and Venkatesh 2008), the follow-
ing sparse discriminant inverse model is given:

〈W,S〉 = argmin
W,S

‖X − LS‖2F + β Σ
i
�{hi, f(si,W )}

+ λ ‖W‖2F s.t. ∀i, ‖si‖0 � T
(6)

The first term is the reconstruction error, the second term
represents the classification loss, the third term is the regu-
larization of W to avoid over-fitting. This formulation aims
to simultaneously learn the sparse coding and the classifi-
cation model. Using the multi-class classifier f(·) instead
of one-against-all classifiers is efficient for classification, by
suppressing features sharing among classes and trying to ex-
plicitly extract different sparse representation among differ-
ent classes. In this paper, We focus on an inverse solution
with more balanced reconstructive and discriminative power
by adding the classification regularization term λ. A sum-
mary of our proposed framework is illustrated in Fig.2.

Source Reconstruction Based on Linear Classifier

From Eqn.6, we reduce to the following optimization prob-
lem by using a simple linear classifier.

〈W,S〉 = argmin
W,S

‖X − LS‖2F + β ‖H −WS‖2F
+ λ ‖W‖2F s.t. ∀i, ‖si‖0 � T

(7)

Here H = [h1, h2, . . . , hN ] ∈ R
m×Nt , with each row hi,

i = 1, . . . , Nt being the label vector corresponding to an
EEG signal xi. In order to solve the optimization problem
(7), the K-SVD algorithm and its derivatives can be used.
However, our proposed method is different from these pre-
vious methods in several aspects, owing to it being tailored
to solve the EEG inverse problem.

Optimization with K-SVD Algorithm

For Equation 7, it can be rewritten as

〈W,S〉 = argmin
W,S

∥∥∥∥
(

X√
βH

)
−
(

L√
βW

)
S

∥∥∥∥
2

F

+λ ‖W‖2F s.t. ∀i, ‖si‖0 � T

(8)

Let Xnew = (Xt,
√
βW t)t, Lnew = (Lt,

√
βW t)t, the op-

timization of Equation 8 is equivalent to solving the follow-
ing problem:

〈Lnew, S〉 = arg min
Lnew,S

‖Xnew − LnewS‖2F
+ λ ‖W‖2F s.t. ∀i, ‖si‖0 � T

(9)

In neuroscience community, the lead field matrix is rarely
normalized (Grech et al. 2008). We use normalized lead
field matrix L to meet the requirement of K-SVD algorithm.
It’s more important to find an explanatory activation pattern
compared to magnitude of the signal as a common practice
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Figure 2: Discriminative Source Reconstruction Framework: The left two topoplots represent the recorded EEG potentials on
the scalp for two stimulus status (e.g. finger tapping and comedy video stimulus), and the lead field matrix are represented as
overcomplete dictionary, the sparse coefficients are the codes for the source activation location and activation potentials; The
sparse coefficients and W matrix are estimated simultaneously. Each row of W matrix is termed as discriminative filter because
the Hadamard product of the source code coefficient and the discriminative filter can highlight the corresponding stimulus
activated source signal by masking the common background or resting activation signals which is share by other different brain
stimulus inputs. The rightmost pictures are exemplary reconstructed discriminative source activation patterns on the cortex

(Haufe 2011). Later we show that the normalization doesn’t
effect the solution in case of �0 norm. The normalization is
defined as:

L′ = {l′1, l′2, ..., l′Nd
}

= { l1
‖l1‖2

,
l2

‖l2‖2
, ...,

lNd

‖lNd
‖2

}

W ′ = {w′
1, w

′
2, ..., w

′
Nd

}
= { w1

‖l1‖2
,

w2

‖l2‖2
, ...,

wNd

‖lNd
‖2

}

(10)

Suppose xi is the EEG signal vector and we want to find cor-
responding source location. xi is a sparse linear combination
of the atoms in L, which can be expressed as:

xi =
∑Nd

m=1
lmsi(m) =

∑Nd

m=1

(
lm

‖lm‖2

)(
si(m)‖lm‖2

)

=
∑Nd

m=1
l′ms′i(m)

Also, the Label matrix hi can be expressed as

hi =
∑Nd

m=1
w′

ms′i(m) =
∑Nd

m=1

(
wm

‖lm‖2

)(
si(m)‖lm‖2

)

=
∑Nd

m=1
wmsi(m)

The sparse coding with or without normalization of L is
equivalent in terms of �0-norm, which is ‖si‖0 = ‖s′i‖0, thus
the normalization of lead field matrix doesn’t effect the re-
construction solution under condition of �0-norm. As Lnew

is always normalized column-wise, we can drop the regular-
ization penelty term ‖W‖F .

〈L′
new, S〉 = arg min

L′
new,S

‖Xnew − L′
newS‖2F

s.t. ∀i, ‖si‖0 � T
(11)

For similarity, we omit the apostrophe (′) notation when
there is no confusion. When fixing S, solving L matrix can
be regarded as solving a simple regression problem:

L̂ = argmin
L

‖X − LS‖2F , (12)

where L̂ = XST (SST )−1. The computational complexity
of XST (SST )−1 is O(n3), it is advisable to solve it us-
ing K-SVD by updating the dictionary atom-by-atom. This
optimization problem of Eqn.11 is exactly what K-SVD al-
gorithm (Aharon, Elad, and Bruckstein 2006) solves and the
only difference is that the upper L part of dictionary Lnew
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will not be updated. We adopt the procedure in the original
K-SVD algorithm.

Following K-SVD, denote l′k as the kth column in the
L′
new, and sk is the corresponding kth row in S. The second

term L′
newS can be decomposed into the following formu-

lation:

LnewS =

Nd∑
k=1

lk ∗ sk

Let Ek = (X−∑
j �=k(lj ∗sj)), representing the error with-

out using the atom lk, the main idea of K-SVD is to update
each atom in the dictionary sequentially to the projected di-
rection that most reduces the error. Let s̃kR and Ẽk denote
the result of discarding the zero entries in xk

R and Ek, re-
spectively. As a result, lk and s̃kR can be computed using

〈
lk, s̃

k
R

〉
= arg min

lk,s̃kR

∥∥∥Ẽk − lks̃
k
R

∥∥∥2
F

(13)

The above optimization problem can be easily solved
by employing an SVD composition of Ẽk, namely,
UΣV t = SV D(Ẽk), and using the SVD result and update
the lk and s̃kR with lk = U(:, 1), s̃kR = Σ(1, 1)V (1, :).
U(:, 1) denotes the first column of matrix U , and V (1, :)
is the first row of V , Σ(1, 1) is the first diagonal value of
Σ. The upper part of the Lnew matrix will not be updated,
and only the lower part composed of W matrix is updated.
The detailed algorithm is given in the following algorithm 1
with matlab indexing notation.

Algorithm 1 Revised DK-SVD algorithm
INPUT: Lead field matrix L, preprocessed EEG signal ma-
trix X , relative controlling scalar β, label matrix H
OUTPUT: classification matrix W , EEG source matrix S
Initialization: Using K-SVD initialization described in
Ref.(Aharon, Elad, and Bruckstein 2006)

set m = 1
while not converged do

Solve the following sparse coding problem using
matching pursuit algorithm for i = 1, 2, . . . , N :
min
si

‖xi − Lsi‖22 s.t. ‖si‖0 � T

while i is not equal to Nd do
(1) Compute the representation error without atom
li, Ei = (X −∑

j �=i(lj ∗ sj))
(2) Extract the nonzero entries of si and truncate the
Ei to EP

i accordingly.
(3) SVD decomposition for EP

i as EP
i = UΛV

(4) Update li and sTi :
li(Nc +1 : end) ←− U(:, 1)(Nc +1 : end),
s̃iR ←− Σ(1, 1)V (1, :).

(5) Update index i ←− i+ 1;
end while
m ←− m+ 1

end while

Numerical Experiments

Numerical simulations were conducted given different SNR.
We compared our proposed framework with two differ-
ent baseline methods. Computation time (in s) combined
with three different accuracy criteria and two solution qual-
ity measurements were used as gauges. The first baseline
method is formulated as �1 sparse representation (�1SR)
and solved with Efficient Projections onto the �1-Ball (EP-
�1B) (Liu and Ye 2009), and the second baseline method
are the recently developed MxNE (Gramfort, Kowalski, and
Hämäläinen 2012).

Head and Source Model

Head model is a volume conductor model which is used to
describe the flow of electric current in the head. Usually, the
brain model was built in 3 steps, (1) collect the MRI images;
(2) tissue segmentations (3) Mesh generation and assign-
ment of conductivities for different tissues. We used a newly
developed lead field model called ICBM-NY or “New York
Head” (Huang, Parra, and Haufe 2016) which is based on
highly detailed standardized finite element model (FEM) of
the non-linear averaged anatomical template-ICBM152. The
brain tissue segmentation is divided into 6 tissue type (scalp,
skull, cerebro-spinal fluid(CSF), gray matter, white matter
and air cavities) with native MRI resolution of 0.5mm3.
We imposed biological pink noise and EEG sensor mea-
surement noise to test accuracy of different algorithm with
SNR from 1.5 to 0.5. The pink noise is generated from 100
sources located randomly inside the brain. The sensor mea-
surement noise is directly added to the measured EEG sig-
nal. Based on the criteria given by Baillet and Garnero (Bail-
let and Garnero 1997), the spatial and temporal accuracy
should be at least better than 5 mm and 5 ms respectively.
Also, we divided the brain into 8 region of interests (ROI)
called Right Anterior Inferior (RAI), Right Anterior Supe-
rior (RAS), Right Posterior inferior (RPI), Right Posterior
Superior (RPS), Left Anterior Inferior (LAI), Left Anterior
Superior (LAS), Left Posterior inferior (LPI), Left Posterior
Superior (LPS). The simulated source dynamics is generated
linear autoregessive (AR) model with order of 6.

Reconstruction Accuracy

We used three different accuracy criteria to measure the
reconstructed source accuracy. The first one is perfect re-
construction accuracy (PRA), which compare the calculated
source location and the exact ground true. The second mea-
surement is to use Baillet-Garnero’s reconstruction accuracy
(BRA) criteria (Baillet and Garnero 1997). The third mea-
surement is to use the criteria proposed in (Haufe and Ewald
2016) denoted as Haufe reconstruction accuracy (HRA),
which is to measure whether the reconstructed source is lo-
cated in the ROI. To make the solution be more informative,
a sparse solution is always preferred for its interpretability.
The averaged number non-zero entries (NZE) in the solution
is also included to measure the sparsity. ‖X − LS‖F is the
reconstruction error (RE).

Detailed numerical experiments performance are listed in
Table 1-3. From the tables 1-3, our proposed framework out-
performs the other two baseline methods for less computa-
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tion time, more accurate based on 3 different criteria, more
sparse solution, better reconstruction error and also with the
capability of extracting discriminative sources. For the other
two baseline methods, the results are based on optimized
regularization parameters with a balanced trade-off between
the sparsity and reconstruction error.

We found that even when the SNR is high, the traditional
algorithm can only find the resting state or background noise
which is set to be much larger, missing unanimously the
discriminative source, meaning that the task related source
can’t be estimated correctly. We are not surprised that the
baseline method achieved bad performance since some of
the atoms are highly coherent each other and the sparsity
property is hard to achieve, the �1 or �2 norm tend to assign
non-zero value to those high coherent atoms simultaneously.

We demonstrated an exemplary results in Fig.3 and Fig.4.
Fig.3 demonstrates the reconstructed source and calculated
discriminative filters W , the discriminative filters suppress
common source shared by different status while extract-
ing and magnifying distinguished ones. Fig.4 illustrates the
EEG potentials topoplots on the scalp before and after the
application of our method, distinctive source activation pat-
terns can be clearly revealed.

Table 1: Performance comparison at SNR=1.2
Method Time PRA BRA HRA NZE RE
DKSVD 2.04 0.77 0.81 0.93 4.00 0.91

�1SR 10.9 0.33 0.37 0.52 308 118
MxNE 10.6 0.22 0.25 0.50 449 85.6

Table 2: Performance comparison at SNR=0.8
Method Time PRA BRA HRA NZE RE
DKSVD 2.26 0.77 0.79 0.91 4.00 1.86

�1SR 10.9 0.31 0.35 0.50 316 117
MxNE 12.9 0.32 0.32 0.53 418 95.8

Table 3: Performance comparison at SNR=0.5
Method Time PRA BRA HRA NZE RE
DKSVD 2.38 0.63 0.64 0.68 4.00 12.4

�1SR 11.4 0.30 0.32 0.50 410 111
MxNE 12.0 0.25 0.28 0.50 507 89.6

Conclusion and Future Work

We aim to reconstruct discriminative sources given different
brain status. A label guided dictionary learning formulation
is given for the first time with �0-norm and is solved using
our revised version of DK-SVD algorithm. Through numer-
ical simulations, we showed that in terms of accuracy and
speed, our method is better than the �1 or �2 related ones.
The reason is high coherence of lead field matrix and spar-
sity constraints is easy to fail. The classification component
trained a W matrix with each row corresponding certain type
of brain status, which is physically meaningful, we termed

Figure 3: Sparse coding and discriminative filter for 3 dif-
ferent brain status: the common resting state signal is atten-
uated by W (as is illustrated in LAS region) and the recon-
structed discriminative sources are extracted and magnified
by the corresponding rows of W . The upper subfigure is the
reconstructed source S and discriminative filter W is given
in the lower subfigure.

Figure 4: Discriminative filtered topoplots for 3 different
brain status: the top 3 topoplots is corresponding to 3 dif-
ferent brain tasks with high common source from sponta-
neous activity or resting state potentials, it’s very hard to
distinguish them. Below is the topoplots after we applied
our methodology to extract the discriminative expression for
different brain tasks. The lower topoplots are constructed by
applying the discriminative source to the forward model.

as discriminative filter. Our proposed framework can achieve
satisfactory result compared to traditional methods and can
be extended to more specific priors such as spatially smooth-
ness requirement or depth compensation requirement.
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