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Abstract

For localized prostate cancer, one treatment is prostatectomy which surgically removes the prostate gland. However, some unde-
tectable cancer cells may be left as positive surgical margins, leading to a high risk of cancer recurrence. It is highly desirable to
develop a portable and accurate classification methodologythat detects positive margins on human prostate specimens immediately
after their removal during surgery. This study applied datamining techniques on the Light Reflectance Spectroscopy (LRS) data
taken from ex vivo human specimens and developed a novel classification algorithm that could enable real-time, positive-margin
identification during surgery.
Specifically, a total of 184 LRS measurements taken from human prostate specimens ex vivo were classified to normal or cancerous
tissue with support vector machines for binary classes and were also classified to normal, cancerous and transition-to-cancer class
with an ensemble of trees for three classes. The 184 spectraldata in this study were highly overlapped and imbalanced among
classes. We solved the overlapping issue by first using expert knowledge to define a middle class (i.e., transition-to-cancer) be-
tween cancerous and normal tissue, and by second generatinga moving spectral window through the range of LRS to find the
best discriminative wavelength range. To solve the imbalanced problem, we removed irregular tissue measurements, followed by
application of random undersampling from the majority class. We achieved sensitivity and specificity of 100% and 82% forbinary
classification, and accuracy of 0.61, 0.62, and 0.60 for the respective three classes with a spectral window length of 200nm.

Keywords: Light Reflectance Spectroscopy (LRS), data mining, positive surgical margin, prostate cancer , support vector
machines (SVM) , ensemble , random undersampling (RUS)

1. Introduction

Prostate cancer is the second cause of cancer-related deaths
among men in the United States after lung cancer. For localized
prostate cancer, one treatment is prostatectomy which surgi-
cally removes the cancer-containing prostate gland. During the
surgery, the prostate gland with surrounding tissue is excised,
with the best hope that all the cancer cells are completely re-
moved while maximally preserving healthy surrounding tissue.
However, due to limited time, technology and analysis currently
available, any prostate cancer cells already spread on the cap-
sule or/and surrounding tissue are too small to be seen/detected
by the surgeons naked eyes and thus may be left behind as pos-
itive surgical margins.As stated in study [1], there is no glob-
ally accepted approach for positive margin (PM) detection of
prostate cancer, however partial sampling can be used to mea-
sure this feature of prostate cancer. Although partial sampling
can easily miss about 13 to 21 % of PMs and even slightly more
missings in PMs of patients with low-risk to intermediate-risk
prostate cancer. Harvard health publications, section of prostate
knowledge, [2], discuss the ways to minimize the likelihoodof
a positive margin, one way is using the Gleason score (a clinical
grading). The tissue sample is painted on the external surface
with different colors of ink to designate to left and right sides

prior to slicing. The tissue slices are used to evaluate the mar-
gins; one possible clinical feature is Gleason score as the crite-
ria for the positive surgical margin, a high GS (greater than7)
is a sign of correlation. In a more recent study [3], a video-rate
structured illumination microscopy (VR-SIM) of a removed tu-
mor is established as an alternative to intra-operative frozen sec-
tion pathology to reduce additional treatment and minimizetu-
mor recurrence. They generate gigapixel panorama images of
the surface that can be interpreted by pathologists. In the previ-
ous studies of our own research team, [4, 5], it is suggested that
intraoperative frozen section analysis is time-consumingand in-
efficient. Therefore, it is proposed to apply light reflectance
spectroscopy as a more viable, less expensive and quicker ap-
proach to differentiate malignant from benign tissue.

It is clinically important and highly desirable to develop a
technique/methodology that can be used during prostatectomy
to provide the surgeon on site with a portable, objective tool
for accurate identification of positive margins. In this way, im-
proved accuracy of surgical decision-making will lead to bet-
ter efficacy of the treatment, elimination of further chemo- or
radiation- therapy, and higher quality of patients lives. The
main focus of this study was to classify positive surgical mar-
gins on human prostate specimens that were measured by a
hand-held light reflectance spectroscopy (LRS) device.To our
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knowledge, considering the traditional methods like frozen sec-
tion, there is not such a fast computational model that learns the
scattered light to detect the positive margin efficiently. Our al-
gorithm development was based on spectral measurements of
LRS with the application of data mining techniques. In partic-
ular, we overcame two issues that we encountered in this clas-
sification problem: the data taken from cancer versus normal
classes were highly imbalanced, and the samples’ data were
overlapping. Our novel solution consisted of (1) defining a
moving window through the wavelength range, (2) removal of
some measurement data taken from irregular specimen tissues,
(3) definition of a third class as an intermediate stage of tissue
class between cancer and normal, and (4) novel approach using
random undersampling (RUS) and tuning the parameters of the
most promising machine learning algorithms via N-fold cross
validation. In this way, our approach yielded an exhaustive
search through the wavelength range and found an optimized
spectral window location and window length.

Light Reflectance Spectroscopy (LRS) is a noninvasive mea-
surement/imaging modality that can be used to quantify or clas-
sify biological tissues in vitro or in vivo [6, 7]. The LRS rests
on the principle that a thin beam of white light illuminated on
a piece of biological tissue through a fiber undergoes forward
light scattering within the tissue, and a portion of the scattered
light is randomly back-scattered near the surface and collected
by a detection fiber placed a few hundred microns away from
the delivery fiber. The detected optical signals are converted to
an optical spectrum by a spectrometer, containing characteristic
features of the measured biological tissue. Thus, LRS has been
used to measure the degree of light scattering and light absorp-
tion that results from a variety of chromophores at the cellular
level. In particular, light scattering intensity is highlyassociated
with the morphology of the tissue, so its spectral signatures can
facilitate differentiation between malignant and benign tissue,
as demonstrated by our previous studies and others [8, 9] .

The most important step in a data mining approach is to find
the best machine learning algorithm. In recent studies [4, 5],
a linear fitting model was applied to extract features from the
morphological properties of the LRS data and thus to classify
cancer from normal. It used 5 extracted features from the spec-
tra and fitted a logistic model, which gave rise to 0.86 and
0.85, respectively, for sensitivity and specificity. In an earlier
study [9], a classification tree was fitted on the normalized raw
LRS data to classify cancer from normal. With an application
of clustering for label definition, they achieved 0.94 and 0.64
for sensitivity and specificity after selection of specific wave-
lengths. In this study, we defined the best machine learning
algorithms to be the ones that yielded the highest performance
in the most informative wavelength range. We applied support
vector machines with a radial basis function [i.e., SVM(RBF)]
and an ensemble method (boosting) of trees with a random un-
dersampling(RUS) technique. With this approach, we classified
cancer versus normal tissue as a binary problem and achieveda
sensitivity and specificity of about 1.00 and 0.82, respectively.
The overall results presented in this paper show much improve-
ment with respect to the past studies [4, 9]. Furthermore, we
applied the ensemble method with RUS (RUSBoost) to explore

the feasibility of identifying three types of tissues: cancer, nor-
mal, and transition-toward-cancer. Our multi-class classifica-
tion algorithm resulted in the accuracy of 0.72, 0.60 and 0.63
with a spectral window length of 10 nm and 0.61, 0.62 and
0.60 with a spectral window length of 200 nm, for the respec-
tive three classes. Our results demonstrated that the RUSBoost
method outperforms SVM on multi-class classification.

2. Apparatus & Data

The apparatus of LRS for the detection of positive surgical
margins for prostate cancer utilized a needle-like opticalprobe
(so called needle probe hereafter) with a diameter of 1 mm hold-
ing two 100-m fibers for the source and detector. The source-
detector separation was about 370 m. The source fiber was con-
nected to a tungsten-halogen light source (HL2000HP, Ocean
Optics, Inc., Dunedin, FL, USA), and the detector fiber was
connected to a hand-held spectrometer (USB 2000+, Ocean
Optics, Dunedin, FL USA) with a spectral range of 350 nm
to 1000 nm, as shown in Figure (1).

The measurements were performed at the University of Texas
Southwestern (UTSW) Medical Center, Dallas, TX. Fresh
ex vivo prostate specimens were obtained from patients un-
dergoing robotic-assisted laparoscopic radical prostatectomy
[10, 11]. Immediately after removal from the patient, the
prostate specimen was then transferred to the pathology room
and placed on a stage for LRS measurements. The needle
probe was placed normal to the surface of a selected area of
the prostate. The tip of the probe was in good contact with the
tissue surface without pressing it. The LRS measurements were
taken from several spots on each specimens surface. The spots
were selected to be either (1) potential cancer tissues or (2) nor-
mal tissues on the prostate surface. The measured locations
were color marked for later pathology confirmation.

The Gleason score (GS) is a clinical grading scale to mark or
classify the grade of the prostate cancer and to rank the severity
of cancer. In practice, pathologists are responsible for grading
the prostate cancer and assign a grade from 1 to 5 to the tis-
sue they observe using a microscope. Grade 1 is assigned to
the prostate tissue that looks very similar to the normal prostate
tissue. Grade 5 is assigned to the prostate tissue that has high-
est abnormal morphological patterns (i.e. the highest grade of
prostate cancer). Grades 2 to 4 are assigned to the prostate
tissue regions that have intermediate characteristics between
Grades 1 and 5. Grades 1 and 2 are not labeled for biopsies
due to their very low-risk factor [12]. Figure (2) demonstrates
morphological distributions of prostate normal and cancerous
tissue corresponding to 5 different Gleason scores [13]. More-
over, prostate cancer often has two grades within one region.
In clinical practice, the two grades are both recorded to express
the severity of the cancer. The first value represents the most
common grade seen in the region, while the second value rep-
resents the less common grade in the cancer by volume. As an
example, a Gleason score of 3+ 4 = 7 means that the majority
of the cancer is at Grade 3, and the minority of the cancer is
Grade 4. These scores are added to produce a Gleason score of
7 [12].
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(a) Apparatus (b) Measurement

Figure 1: LRS apparatus and measurement on prostate sample

Figure 2: Gleason score corresponding to pattern

3. Method

The main purpose of this study was to develop an efficient
data mining algorithm that can discriminate between normal
and cancerous tissue based on tissue spectra taken by LRS.
However, the experimental data obtained from normal and can-
cer prostate tissue were highly imbalanced and overlapped.In
this study, we overcame the issue of overlapping and imbal-
anced classes in two steps; First, we added a new group by
relabeling the cancer samples with GS(3+4) to the transition-
to-cancer. Second, we defined a moving spectral window with
length and location as parameters. The choice of spectral win-
dow affects the classification results significantly and needed to
be optimized. These two steps contributed to more discrimina-
tion between classes. We repeated the analysis after excluding
all samples with irregular/fatty tissue for comparison.

The following sub-sections include (1) explanation on how to
group the data for more discriminative classes in Improvement
Procedure, (2) the process of optimized window definition and
spectrum selection in Feature Extraction and Selection, (3) for-
mulation of the machine learning algorithms in Classification,
and (4) validation of the results in Evaluation and Validation
sub-section.

3.1. Improvement Procedure

As a part of pre-processing and noise removal, we defined the
third class as transition-to-cancer between cancer and normal
and removed samples with irregular/fatty tissues by applying
the expert knowledge from pathology and previous experiences.

In this way, we improved the result of initial classificationbased
on the entire data set (i.e., all samples and entire wavelength
range).

We had a total of 184 spectral measurements from 465-1140
nm consisting of three GS categories: 3+4, which is consid-
ered to be less aggressive cancer margins, 4+3, and 4+4, which
are considered highly aggressive cancer margins and need to
be clearly identified. We utilized GS initially to define cancer
and normal classes and found: 29 aggressive cancer samples
(labeled by+1 as cancer) and 155 non-aggressive and/or nor-
mal tissue samples (labeled by -1 as normal). Then, we rela-
beled cancer samples with GS= 3+ 4 to define the third class (
transition-to-cancer). This intermediate class would be used to
define a multi-class problem which might be useful to provide
precautious lesions to the surgeons during the prostate cancer
surgery. Table (1) lists the number of samples in each class (i.e.,
cancer, normal and transition-to-cancer) before and afternoise
(irregular or fatty tissue measurements) removal for binary and
multi-class cases.

Table 1: Count of samples in each class: cancer, normal and Gleason Score
(GS) 3+ 4, before and after removing irregular tissue measurements.

Count of the samples in class
Class names Before removal of After removal of

irregular tissues irregular tissues
Cancer 9 9
Normal 155 134

GS (3+ 4) in cancer 20 15
Total count 184 158

3.2. Feature Selection

We realized that two obstacles prevented us from having a
promising performance in classification: (1) imbalanced classes
and (2) overlapping samples when using the entire wavelength
range of the data. To overcome these issues, we decided not
to use the entire wavelength range in the analysis. The spectral
range of LRS data was 465.82 nm to 1140.97 nm, consisting of
2048 measurement points. The spectral interval was not a fixed
value and varied from 0.27,0.29,0.30, . . . ,0.38,0.39(nm).

It was not wise to use a single wavelength since it would give
us only one dimension for differentiating the classes. While a

3



range of wavelengths could offer more freedom to find discrim-
inative patterns, it was crucial to determine an optimal spectral
range. We searched over combinations of length and start point
of the spectral window over the wavelength range.

3.3. Classification

We selected the support vector machines (SVM) and the en-
semble of trees as the best-supervised learning approachesto
construct a predictive function from a set of input-output pairs
(i.e. training set). These two classifier models showed promis-
ing performance when evaluated on test set under N-fold cross
validation.

3.3.1. Support Vector Machines (SVMs)
SVM is a supervised machine learning algorithm frequently

used in classification [14], [15] with various applicationsin
real-life problems including handwritten digit recognition [16],
object recognition [17], speaker identification [18], facedetec-
tion in images [19], text categorization [20], pattern recognition
[21], biomedical applications [22, 23, 24, 25], and financial ap-
plications [26, 27].

SVM classifier uses a training set inℜn, with corresponding
labels for each sample to find the decision boundary that sepa-
rates classes with the highest margin (distance between closest
samples of each class, known as support vectors) and the least
error for misclassification. The hyperplane is representedwith
a normal vectorw and a bias termb, both of which can be mul-
tiplied by any scalarλ , 0 without changing the hyperplane.
The distance of an instancex ∈ ℜn from the hyperplane is
f (x) = 〈w ·x〉+b, where〈 · 〉 is the dot product. This distance is
called thefunctionaldistance, whereas the (actual)geometrical
distance is measured asf (x)/‖w‖.

Given m pairs of training data (xi , yi), i = 1, . . . ,m, where
yi ∈ {1,−1} are the labels, the hyperplane that maximizes the
margin in case of a linearly inseparable training data, can be
found by solving the following problem.C

∑n
i=1 ξi is the slack

term added to each constraint and penalized in the objectiveas
shown in Equation 1 with the loss function known ashinge-loss
or linear penalty.

min
w,b
{‖w‖2/2+C

n∑

i=1

ξi : yi(〈w · xi〉 + b) ≥ 1,

ξi ≥ 0, i = 1, . . . ,m}. (1)

SVM classifier implicitly map the data into a higher di-
mensional space. In such a mappingx 7→ φ(x), K(xi, xj) =
〈φ(xi) ·φ(xj)〉, K is thekerneland can take many linear and non-
linear forms as long as it satisfies certain geometrical properties
in the mapped space [14]. Given the new nonlinear distances
through the kernel function, the rest is to find a linear separation
in the mapped higher dimensional space. The calculation of
these distances is done implicitly by the kernel function. Some

of the most frequently used kernel functions are linear, polyno-
mial, Gaussian radial basis and sigmoid. To solve a large prob-
lem quickly, chunking and decomposition methods have been
proposed to make SVM training practical [28, 29]. Sequen-
tial minimal optimization (SMO) is an extreme decomposition
method that iteratively solves the QP problem two variablesat a
time, whose solution can be found analytically [30, 31]. SVMs
are extended to multi-class classification with one class against
one class or one class against all classes training [32, 33].

In this study we applied Gaussian radial basis, exp(−‖x − i −
x j‖

2/2σ2) for the kernel mapping, with the application of SMO,
therefore,σ, the parameter in kernel mapping andC, the box
constraint in objective, were tuned in N-fold cross validation.

3.3.2. Ensemble Methods of Decision Trees
There are two kinds of ensemble methods, bagging and

boosting. Bootstrap aggregating (Bagging) [34] is an aggre-
gated predictor that determine the final value by averaging for
regression, and by outnumbered vote for the class. Bagging
trees with bootstrap replicates outperform single tree because
aggregation change good predictors to optimal ones. Boosting
converts weak learners to strong ones and its focus is on error
minimization. Boosting algorithm iteratively redistributes mis-
classified samples with higher probability [35]. And at the end
combines weak learners from different subsets of data into a
single prediction rule. Boosting outperforms bagging withre-
spect to the minimization of the test error [36]. In this study,
we selected to use the RUSBoost [37] boosting method that
combines Adaboost.M1 for binary class or Adaboost.M2 for
multi-class as ensemble techniques with random undersampling
to overcome skewed classes. Adaptive boosting (AdaBoost)
[38] is a popular strong ensemble method, with adaptive learn-
ing and no random selection. RUSBoost assigns equal weights
to each sample in training data, thenK weak learners are it-
eratively trained after random undersampling is applied onthe
majority class and a temporary training data is createdK times.
Sample weights are updated based on the pseudo-loss function
of the temporary data in a way that more weight goes for mis-
classified samples and weak learners get boosted.

In this study, the weak learner in the boosting process is a
decision tree with CART algorithm. Decision trees classifyin-
stances based on attributes which are represented in nodes and
a sequence of rules through branches. Each attribute is selected
such that impurity is reduced as much as possible in a recur-
sive algorithm. There are several popular algorithms that have
been developed in decision tree regression, such as ID3, C4.5,
and classification and regression tree (CART). The most well-
know algorithm to generate decision trees is known as C4.5
[39]. It builds decision trees from a set of training data by
using the concept of Shannon entropy [40], a measure of un-
certainty associated with a random variable. Based on the fact
that each attribute of data can be used to split the data set into
smaller subsets, C4.5 examines the relative entropy for each at-
tribute. The attribute with the highest normalized information
gain is used to make a decision. Large trees over-fit and are
very complex, therefore they can be pruned by cross validation
for cost-complexity-parameter taken from the CART algorithm

4



which is the combination of training error and penalty for model
complexity. Another way to control the depth of the tree is to
merge the leaves that come from the same parent while using
the estimates of the optimal sequence of pruned sub-trees with-
out pruning. When pruning and merging are both applied, the
algorithm merges leaves with the highest vote of same class per
leaf. In each step of the application of (RUSBoost) algorithm,
there are some parameters that are tuned in the N-fold cross
validation. The parameters in boosting are: number of ensem-
bles in learning process, learning rate and cost matrix thatsets
the penalty for miss-classification of classes. Parametersin the
decision tree are: minimum leaf size, split criteria, maximum
number of splits, decision on pruning and merging. A parame-
ter in random undersampling is the ratio of the larger to smallest
class.

3.4. Evaluation and Validation

The classifiers were trained and evaluated with N-fold cross
validation. For the binary problem (i.e., cancer vs. normal), re-
ceiver operating characteristic (ROC), the area under the ROC
curve (AUC), average of sensitivity and specificity were re-
ported. For the multi-class problem, the accuracy of each class
was reported. Accuracy is defined as the ratio of correctly clas-
sified samples to all available samples. In this study, we relied
on the average of sensitivity and specificity, instead of accu-
racy, because the data was highly imbalanced and the value of
accuracy could be misleading. Sensitivity (or true positive rate)
and specificity (or true negative rate) formulations are shown
in Equation (2). ROC illustrates the performance of a binary
classifier as decision boundary is varied. The ROC curve can
be created by plotting the true positive rate (TPR) as sensitivity
against the false positive rate (FPR) as (1 - specificity) at vari-
ous threshold settings. In Equations (2), T means true, F means
false, P means positive (cancerous), and N means negative (nor-
mal).

S ensitivity=
T P

T P+ FN
,S peci f icity=

T N
T N+ FP

(2)

4. Results

In this section, we present the classification results for the
binary class and multi-class prostate cancer problems. Allof
the classification results reported in this section are the best that
we could achieve after tuning the parameters in the classifiers.

In Table (2), the classification performance of SVM on the
original LRS data is shown, using the entire wavelength range
and all of the samples. Out of 184 measurements consisted of
three GS categories, 155 samples including GS(3+4) are con-
sidered normal, and 29 samples with GS(4+3 and 4+4) are con-
sidered cancerous. Rows one and two of the Table (2) report
classification results without and with normalization, respec-
tively. Although normalization over the wavelength range im-
proved classification in study [9], in this study it reduced the
specificity of normal class in all classification models. There-
fore, we did not further report the results with normalization in
the rest of the paper.

4.1. Spectral window’s parameter optimization

As explained in section 3.2, we defined a moving window
with parametric length through the available wavelength range.
In Figure (3), we demonstrated the best performance of the bi-
nary SVM (RBF) classifier on each of the spectral windows
after removal of GS (3+ 4) from the cancer class and irregu-
lar (fatty) tissues from both classes. The contours in Figure (3)
summarizes the search process based on color-coded values for
the average of sensitivity and specificity for different combina-
tions of start-point of the window and its length. The brightest
contours indicate that high performance of the classifier can be
achieved with different lengths as long as the window includes
the spectral range 634-644 (nm). It also reveals that with start-
point less than 580 (nm), the average performance is about 53
%, however, after 580 nm, performance increases to the average
of 83 %. Moreover, with spectral window length less than 200
(nm) and start-point greater than 580 (nm), the performanceis
more than 91 %.

The performance value along with the corresponding opti-
mized window are listed in Table (3). The difference between
the lowest and highest performance is about 3 %, indicating
that with different optimized models and window length less
than 200 nm, we can achieve classification in high accuracy.
The highest, however, pertains to length 30 nm (from 634.65 to
664.84).

In Figure 4, the best performance of the RUSBoost classifier
for different spectral window lengths are shown. Y-axis repre-
sents the accuracy of each class for the most promising starting
point of the spectral window.

Figure 3: Best performance of the SVM model for different combinations of the
length and start point of the window through the wavelength range.The range
and the corresponding performance for each contour is provided in Table (3)

4.2. Binary Classification

Observing the white (brightest) contour in Figure (3), it was
realized that with the length of spectral window less than 200
(nm), the performance of the best model was about 91-92 %
and wider lengths decreased the accuracy. Therefore we chose
the widest possible spectral window (i.e. 200 nm) for compari-
son in Table (4), showing the binary SVM classification perfor-
mance. Table (4) clarifies improvement after defining the spec-
tral window on wavelength range and removal of GS (3+ 4)
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Table 2: SVM binary classification performance on raw data with full wavelength range, having all measurements with N-fold cross-validation

Preprocess on SVM (RBF) binary classification performance with 10 fold cross validation
raw data consisting: AUC Accuracy Average of Sensitivity Specificity

( 29 cancer, 155 normal) % sen and spe (sen) (spe)
Without normalization 0.6293 72.0350 0.641 0.48333 0.7753

Figure 4: Best possible uniform performance of the RUSBoost method for vari-
ous spectral window lengths. The start point of windows withlengths 10, 30, 50
and 100 is 624.86 nm, and for lengths 200 and 300, the start points are 874.86
and 664.84 respectively

Table 3: Performance of best model (SVM) for various spectral window lengths
at different start points on wavelength after removal of GS(3+ 4) and irregular
tissue measurements.Contour visualization of the values in the table is shown
in Figure (3).

Window Range (nm) Range LengthAvg (sen, spe)
634.65 to 644.75 10 0.9190
624.86 to 645.11 20 0.9120
634.65 to 664.84 30 0.9262
624.86 to 665.19 40 0.9225
614.67 to 664.84 50 0.9225
594.88 to 694.99 100 0.9190
584.93 to 735.14 150 0.9120
554.83 to 755.11 200 0.9157
524.75 to 774.89 250 0.9016
514.89 to 815.22 300 0.9016

505 to 855.07 350 0.8979
494.68 to 894.75 400 0.8979

Sen: sensitivity, spe: specificity

from the cancer samples and shows higher value for specificity.
The values in Table (4) represent the best possible performance
after tuning the parameters with 9 fold cross-validation. Data
was divided to 9 folds since we had the maximum of 9 samples
in cancer class. In each iteration, 1 fold, consisting of 1 can-
cer sample and 17 normal samples, was assumed to be the test
set and the remaining 8 folds were used as the training set. In
Figure (5a), the corresponding promising windows for the 91
% binary SVM performance are shown along with the average
of samples from the three classes before removal of irregular
measurements.

4.3. Multi-label Classification

Removing samples with GS(3+4) from the cancer class pro-
vided the alternative of defining the transition-to-cancerclass
for a multi-class problem. However, by comparing the average
values in each class in Figures (5a) and (5b), we realized that
low-grade cancer samples were very similar to the class of nor-
mal and it would be very challenging to obtain high accuracy in
three classes simultaneously.

Analyzing the results of the multi-class problem with RUS-
Boost classification, shown in Table (5), confirmed the exis-
tence of the challenge because of similarity between low-grade
cancer and normal. We could not obtain high accuracy in three
classes simultaneously,. While getting high accuracy in can-
cer and normal was easy, there was very low accuracy for the
transition-to-cancer class. Nevertheless, we achieved a possible
uniform accuracy (more than 50 % ) among three classes with
solving the multi-class problem by the RUSBoost algorithm.
The most promising spectral windows after irregular tissues re-
moval, were any length≤ 100 nm in the wavelength range 625
to 725 nm, shown in Figure (4). And the most promising spec-
tral window before irregular tissues removal, was wavelength
925-1125 nm, shown in Table (5). In Figure (4), the accuracy
of each class for different lengths of window ranged from 0.5 to
0.6. However, shorter lengths yielded more promising results
with respect to achieving more uniform accuracy among three
classes.

5. Discussion

In this section, we discuss, first, the available options forthe
definition of the binary class problem, their results and possible
application. Second, the effect of tuning parameters and their
interpretation.

The main focus of this study was to identify high-risk mar-
gin meaning GS(4+ 3) and (4+ 4) which were considered ag-
gressive from normal. However, there were tissues of grade 3
in cancer samples i.e. GS(3+ 4) sharing similar spectra with
normal; we relabeled them as transition-to-cancer. This rela-
beling provided us with the alternatives on how to define the
binary-class problem. Referring to the data in Table (1), which
is indicating the size of the classes, we defined binary classifi-
cation problems in 4 ways, which could be balanced or imbal-
anced. The best performance of the SVM(RBF) classifier for
each problem is shown in Table (6). By comparing the results
of models 1 and 3, it was confirmed that removal of GS(3+ 4)
from cancer class improves the classifier performance signifi-
cantly; average performance increased from 76 to 91 %. Com-
parison of model 3 and 4 yielded that combining normal with
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(a) Average of 9 cancer samples (red) vs. average of 155 normalsam-
ples (blue) vs. average of 20 GS(3+4) samples (yellow), before removal
of irregular tissue measurements, with promising windows (green rect-
angles) with length 200 nm shown for binary SVM performance.

(b) Average of 9 cancer samples (red) vs. average of 134 normalsam-
ples (blue) vs. average of 15 GS(3+4) samples (yellow) , after removal
of irregular tissue measurements, with promising windows (green rect-
angles) of length 100 and 200 nm for RUSBoost performance

Figure 5: Average of the samples in each of the three classes, along with the optimized spectral windows for binary and multi label classification

Table 4: SVM binary classification performance on moving window with length 200 nm through wavelength range, classes are cancer measurements without GS
3+ 4 vs. normal measurements in 9 fold cross validation.

SVM RBF classification
Wavelength (WL) Before removal of irregular tissue After removal of irregular tissue
Range (unit nm) Accuracy Avg(Sen, Spe) Sensitivity SpecificityAccuracy Avg(Sen, Spe) Sensitivity Specificity

WL start WL end % (sen) (spe) (sen) (spe)
545.09 745.14 76.6875 0.8708 1 0.7417 84.3046 0.9120 1 0.8240
555.21 755.11 76.6875 0.8708 1 0.7417 84.9582 0.9157 1 0.8314
565.28 765.02 80.0208 0.8893 1 0.7787 84.3046 0.9120 1 0.8240
575.31 775.23 79.9916 0.8893 1 0.7787 84.2274 0.9118 1 0.8236
585.3 785.04 79.4360 0.8615 0.9444 0.7787 84.8810 0.9155 1 0.8310

Table 5: RUSBoost multi-label classification performance on moving window length 200 nm through wavelength range, classesare cancer vs. normal vs. cancer
measurements with GS 3+ 4 with 9 fold cross validation

Irregualr Cost matrix Average Sen Sen Sen
tissue among WL WL Total of sensitivities class of class of class

removal classes start end Accuracy among classes Cancer Normal GS3+4C
No Equal 925.13 1125.06 61.9587 0.6130 0.6111 0.6261 0.6019
No Unequal 925.13 1125.06 58.7475 0.6255 0.6667 0.5708 0.6389
Yes Unequal 495.07 695.34 49.7540 0.5222 0.5556 0.4926 0.5185
Yes Unequal 875.18 1075.05 55.4358 0.5258 0.5000 0.5773 0.5000
Yes Equal 655.18 855.07 71.7470 0.6207 0.8889 0.7880 0.1852

WL : Wavelength, Sen: sensitivity, GS3+4C: GleasonScore (3+ 4) in cancer

low-grade cancer samples, decreased specificity (about 2 % )
with the same sensitivity. When we categorized GS(3+ 4) as
the normal class, it could either be considered as an individ-
ual or in combination with normal class (refer to model 2 and
4). The former case, model 2, yielded 95 % average perfor-
mance, while the latter case, model 4, 90 %. Model 2 indicated
the result of a balanced problem with 9 aggressive cancer sam-
ples and 15 low-grade, while model 4 indicated the results for a
highly imbalanced problem with 9 aggressive samples and 149

non-aggressive. Another practical application of these binary
problems can be a 2-step classification process that would help
the surgeon to predict the transition-to-cancer. Step one,is to
use model 1 to discover normal pattern from cancer sample with
GS ≥ 7 with accuracy of 76 %, then if the sample is predicted
to be cancer, in step two, model 2 is run to differentiate between
high and low-risk factor and predict GS (4+ 4) and (4+ 3) (ag-
gressive) from (3+ 4) (low-grade) with 95 % accuracy.

Since this data was very imbalanced, with the ratio of 1 to 17
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Table 6: Four different ways of defining binary problem and the corresponding best performance of the SVM classifier for a fixed window length of 10 nm (minimum
defined range) at the best performing start point on the wavelength range

Model Best achieved SVM performance with 9 fold cross validation
No Description on binary classification Wavelegn Range (nm) AUC Accuracy average sensitivity specificity

start end (sen, spe) (cancer) (non cancer)
1 cancer 44,43,34 vs. normal 584.93 595.25 0.7625 76.9038 0.7625 0.7500 0.7750
2 cancer 44, 43 vs. cancer 34 624.86 635.01 0.9537 95.5556 0.9537 0.9444 0.9630
3 cancer 44, 43 vs. normal 635.01 645.11 0.9190 85.5392 0.9190 1.0000 0.8380
4 cancer 44, 43 vs. normal and cancer 34635.01 645.11 0.9099 83.6647 0.9099 1.0000 0.8199

44 : GS(4+ 4), 43 : GS(4+ 3), 34 : GS(3+ 4), sen: sensitivity, spe : specificity
All the irregular tissue measurements were removed for the anlysis of this table

(a) Low value for sigma and penalty (b) High value for sigma and penalty

Figure 6: Three-dimensional plot of separating hyperplane in Support Vector Machines, different values for sigma and penalty results in the different shape of
hyperplane and number of support vectors. High values for sigma results in high bias and low variance in the model, and high value in penalty results in low bias
and high variance, and vice-versa. Circles show cancer and,triangles show normal samples. If they are correctly classified, they are filled, otherwise, they are
hollow. The samples close to hyperplane that were taken as support vectors have an aqua circle around.

Figure 7: Grid search for optimized values of sigma and penalty(trade off
between bias and variability of the model). Penalty (c) is theparameter of soft
margin (cost of classification) and sigma is the parameter of Gaussian kernel
to handle non-linearity. Binary classifier performance is defined as average of
sensitivity and specificity on Z-axis.

for the class of cancer to normal, most of the classifiers tended
to predict the test set as the majority class. The initial sensi-
tivity and specificity with various machine learning classifiers

were about less than 50 % and more than 88 % respectively.
This problem was solved by tuning sigma and penalty in SVM
and application of random undersampling (RUS) in boosting
method. In Figure (6), the 3-dimensional visualization of bi-
nary classification and performance of SVM (RBF) for three
wavelength values of 633.92, 634.65 and 636.82 nm is shown.
These three wavelength values were selected based on the esti-
mated predictor importance by permutation of out of bag obser-
vations in boosting trees from the promising spectral windows
shown in Table (3 and 4). The value of sigma decided the shape
of the separating hyperplane, and value for penalty decidedthe
number of support vectors (SV). In the left sub-figure of Fig-
ure (6), sigma and penalty are 0.1, therefore, the hyperplane is
curvy and many SVs are selected because of low penalty. In the
right sub-figure, sigma is 100 and penalty is 10000 therefore,
there is a linear hyperplane with less number of SVs. In Figure
(6) We can see how the cancer class (red circles) are overlap-
ping with normal class (blue triangles) at the upright corner of
each 3-D plot. Hence, we demonstrate the vital role of proper
parameter-tuning in Figure (7).

In Figure (7) performance of the binary-SVM on Z-axis is
shown for different combination of sigma and penalty in a grid-
search for wavelength range of (545.09 nm to 745.14 nm). The
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Figure 8: Grid search for parameters of ensemble of trees (boosting), values are shown for wavelength range of 624.86− 635.01 (nm), for multi-class problem and
after removal of irregular tissues

Define sub-groups:
- Irregular/fatty 

specimen tissues 
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spectral window 

and optimize:
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- Window location
on the spectral range
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algorithm
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Figure 9: The improvement process describing how to start from(original data: 29 cancer samples vs. 155 normal) and achieve higher classification performance
by having 3 classes with less imbalanced and overlapping samples and optimized spectral windows.

upward pattern indicates that forσ ≥ 10 and penalty≤ 0.1, per-
formance is greater than 80 %, and on the other hand, forσ ≤ 1,
sensitivity ranges between 0 and 16 % and average performance
is about 50 %.

In Figure (8), the grid search for the number of ensemble
trees, learning rate, the maximum number of splits and mini-
mum leaf size are shown. The goal of solving the multi-class
problem was to achieve the most uniform accuracy in all of the
three classes. Therefore, when the curves in each sub-plot of
Figure (8), representing the accuracy of each class, were close

to each other and above 50 %, it conveyed that the value for
that parameter was ideal. But when the three curves started to
diverge, it indicated that performance was not uniform among
three classes. Figure (8) is indicating that to achieve uniform
performance among classes, the best learning rate is 0.5, and
best number of splits should be≥ 16, and best value for the
minimum number of leaf size should be≤ 6. Regarding the
number of ensemble trees, changing this parameter didn’t im-
prove performance significantly, therefore, we focused on re-
ducing the computational time (the training and testing time of
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RUSBoost algorithm). In the upper left sub-plot in Figure (8),
test time increases significantly after 100 ensembles without an
increase in average accuracy. The training time for 10, 100 and
1000 ensembles was 0.11, 0.95 and 9.29 (s) respectively, grow-
ing linearly without any improvement in performance. Hence,
we decided to use 50 or 100 number of ensembles for the best-
reported model. The parameters pertaining to best model with
window length 10 (nm) in Figure (4) were 128, for the maxi-
mum number of splits, 2, for minimum leaf size and 50 ensem-
bles. The ratio of majority classes (normal and GS(3+ 4)) to
the small class (cancer) was 2, cost matrix was based on the
frequency of each class (0.06 for cancer, 8.93 for normal, 0.60
for GS(3+4)), no pruning and merging was applied.

6. Summary and Conclusions

This study proposed an effective classification approach
which is summarized in Figure (9) to discriminate between nor-
mal and cancerous LRS spectra. The proposed method consists
of the following steps that contributed to a more discriminative
spectrum between normal and cancer samples:

• Using Gleason score (3+4) to define a transition-to-cancer
class which had similar values to the average of normal.
This similar-to-normal behavior caused multi-label classi-
fication to be challenging and to perform in the range of
low 60s %. On the other hand, removing the transition-
to-cancer samples from cancer class, improved the binary
classification performance (average of 91 %) by reducing
the overlap.

• Removing the noisy data (i.e. the measurements with the
irregular or fatty tissue). By comparing the numbers in Ta-
ble (4), we conclude that this removal improves the speci-
ficity from (0.74 - 0.77) to (0.82-0.83) i.e. average of 6.5%
increase for binary problem. Upward shift of the yellow
curve when comparing Figure (5a and 5b), confirms re-
duction in overlap. By comparing the numbers in Table
(5), irregular tissue removal yielded 1 % increase for the
multi-class problem in window length of 200 nm which
was not very significant.

• Defining the optimized spectral window through the wave-
length range. For both binary and multi label classifica-
tion, this window falls in the range between 600 to 700
(nm). The window is shown in Figures (5b) and (5a) for
multi-class and binary-class respectively.

Regarding the binary classification, the best SVM model dif-
ferentiating cancer from normal yielded about 91-92 % average
of sensitivity and specificity for any window length less than
200 (nm). Specifically the spectral window of 634.65 - 664.65
(nm) was the best. However, all window lengths less that 300
nm through the range 515-815 (nm) yielded accuracy more than
90 %. We presented 3 alternatives to define the binary problem
in addition to high risk v.s normal (model 3 in Table (6)). Based
on the preference of the clinicians, any of the three models can

be applied for positive margin detection with the average ofsen-
sitivity and specificity of 76 %, 95 % and 90 % respectively for
model 1, 2 and 4, which were shown in Table (6).The training
and testing time of the four mentioned binary models are 8.9
and 0.76 ms for model(1), 10.09 and 0.74 ms for model(2), 6.14
and 0.48 ms for model(3) and 8.07 and 0.67 ms for model(4),
which confirms fast performance of the model.Moreover, a two
step classification model could be applied by combining mod-
els 1 and 2with augmented testing time of 1.51 ms; in a way
that first step is to classify cancer from normal and then, if the
prediction falls in cancer group, in the second step, model 2can
be applied to predict high risk from low risk.
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