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Abstract. Diagnosing people with possible epilepsy has major implica-
tions for their health, occupation, driving and social interactions. The
current epilepsy diagnosis procedure is often subject to errors with con-
siderable interobserver variations by manually observing long-term lengthy
EEG recordings that require the presence of seizure (ictal) activities. It
is costly and often difficult to obtain long-term EEG data with seizure
activities that imped epilepsy diagnosis for many people, in particular in
areas that lack of medical resources and well-trained neurologists. There
is a desperate need for a new diagnostic tool that is capable of providing
quick and accurate epilepsy-screening using short-term interictal EEG
signals. However, it is challenging to analyze interictal EEG recordings
when patients behaviors same as normal subjects. This research is dedi-
cated to develop new automatic data-driven pattern recognition system
for interictal EEG signals and design a quick screening process to help
neurologists diagnose patients with epilepsy. In particular, we propose
a novel information-theory-guided spare feature selection framework to
select the most important EEG features to discriminate epileptic or non-
epileptic EEG patterns accurately. The proposed approach were tested
on an EEG dataset with 11 patients and 11 normal subjects, achieved an
impressive diagnostic accuracy of 90% based on visually-evoked poten-
tials in a human-computer task. This preliminary study indicates that it
is promising to provide fast, reliable, and affordable epilepsy diagnostic
solutions using short-term interictal EEG signals.
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1 Introduction

Epilepsy is the most common neurological brain disorders next to strokes, and
about 1% of human population (40 million people) suffer from epilepsy [1]. An
accurate diagnosis of people with possible epilepsy has big implications for their
health, occupation, driving and social interactions, and an inaccurate diagnosis
may have fatal consequences, especially in operating rooms and intensive care
units. However, false diagnosis of epilepsy is unfortunately common in everyday
practice. The estimates of the misdiagnosis rate of epilepsy varies greatly, from
5% in a prospective childhood epilepsy study, 23% in a British population-based
study [2], to as high as 41% in a Swedish study [3]. One reason for the misdi-
agnsis of epilepsy is that many other diseases or medical conditions can result
in abnormal changes in brain behavior, or even cause seizure-like episodes and
thus can be confused with epilepsy [1]. Among commonly used medical tests
such as blood tests, magnetic resonance imaging (MRI), positron emission to-
mography (PET), electroencephalogram (EEG) recording play a central role in
epilepsy diagnosis because it directly detects electrical activity in the brain. The
epileptic diagnosis heavily relies on a tedious visual screening process by neurol-
ogists from lengthy EEG recordings that require the presence of seizure (ictal)
activities. Thus, a prolonged (24-hour) EEG monitoring are often necessary. In
the past decades, there have been many quantitative analysis systems to help
neurologists identify epileptiform patterns from long-term EEG recordings for
seizure detection and seizure prediction. However, it is costly and often diffi-
cult to obtain long-term EEG data with seizure activities for epilepsy patients,
especially in the areas that lack of medical resources and well-trained neurolo-
gists. There have been very few studies that using short-term intericatal EEG
for more convenient and affordable epilepsy diagnosis. There is a desperate need
for a new medical diagnostic tool that is capable of providing quick and accurate
epilepsy-screening using short-term interictal EEG signals.

This study is designed to investigate the application of short-term intericatal
EEG signals for epilepsy diagnosis using machine learning techniques. In partic-
ular, we propose an information-theory-guided feature selection and prediction
framework to identify epilepsy-specific EEG patterns in a fast screening process
in a human-computer interaction task using visually-evoked potentials (VEP).
The proposed method has a potential to be applied to determine whether a
patient is epileptic or non-epileptic in a quick screening process. The organiza-
tion of the paper is as follows. Section 2 presents the information-guided sparse
feature selection framework with regularization. The experimental design, data
acquisition, and method implementation and validation procedure are presented
in Section 3. The experimental results are provided in Section 4, and concluding
remarks are given in Section 5.

2 Information-Theory-Guided Sparse Feature Selection

We propose a novel sparse feature selection approach that interactively inte-
grates information theory with a sparse learning optimization framework with
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regularization to identify optimal feature subset to discriminate patterns of two
classes.

Feature Selection Feature selection techniques have been widely used to iden-
tify most important decisioin variables, to avoid overfitting and improve model
performance, and to gain a deeper insight into the underlying processes or prob-
lem. Feature selection techniques generally can be categorized into three cate-
gories: embedded methods, wrapper methods, and filter methods [4]. Both em-
bedded methods and wrapper methods rely on an employed classifier or model
for feature subset selection. Thus, the feature selection performance is specific
to the selected model. Typical approaches include Pudi’s floating search [5],
stepwise selection [6]. Filter techniques assess the relevance of features by look-
ing only at the intrinsic properties of the data. Some popular examples include
correlation-based feature selection [7], Fast correlation-based feature selection
[8], and minimum redundancy maximum relevance (mRMR) [9]. However, most
current filter techniques select high-ranked features and do not consider feature
dependency fully in feature selection. Several individually low-scored features
can be combined to form a strong discriminative feature subset for classifica-
tion. To address this problem, we propose a novel feature selection framework
that combines mutual information feature filtering and sparse-learning method
interactively to capture feature dependencies and identify the most informative
feature subset efficiently.

Mutual Information-Based Feature Ranking In information theory, mu-
tual information (MI) is a measure of inherent dependence between two indepen-
dent variables [10]. MI measures how much information a feature contains about
the class without making any assumptions about the nature of their underlying
relationships. The mutual information of two variables X and Y, denoted by
I(X,Y ), can be calculated by:

I(X;Y ) =
∑
y∈Y

∑
x∈X

p(x, y) log

(
p(x, y)

p(x) p(y)

)
, (1)

where p(x) and p(y) are the marginal probability distribution and p(X,Y ) is the
joint probability distribution of the variable X and Y. MI can capture nonlin-
ear dependency among random variables and can be applied to rank features in
feature selection problems [9]. The basic idea is to keep the more informative fea-
tures (with higher MI) and remove the redundant or less-relevant features (with
low MI) in filter-based approaches. These approaches can work well in many
cases. However, they are subject to issues of missing some important features by
just excluding low MI-ranked features. The interactions and dependencies among
features are insufficiently considered in the current MI-based feature selection
approaches. Some low-ranked weak features may be integrated with high-ranked
features to produce stronger discrimination power for classification. Based on
this consideration, we propose a novel feature selection framework that can con-
sider both high-ranked and low-ranked features to discover the most important
features efficiently.
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Fig. 1. The framework of the mutual information-guided feature selection approach.

Interactive Feature Selection Framework The key idea of the proposed
approach is to take into account feature dependency while keeping the searching
process computational efficient. The proposed mutual-information-guided fea-
ture selection framework is built on the three steps: MI-based feature ranking,
sparse feature learning on low MI-ranked features, and integration of high- and
low-ranked features. In the feature ranking step, we use MI to rank features and
identify a subset of high MI features that have the best informative power indi-
vidually to class labels. Among those features, the highly correlated features are
considered as redundant features and removed in a way similar to the MRMR
approach. Given a number of features k, the subset of top k features ranked by
MI is denoted by S, and the subset of the remaining features is denoted by W .
In the second step, we employ the most popular sparse learning algorithm, (least
absolute shrinkage and selection operator) lasso, to select potentially important
feature subset from the low-ranked features in set W . The formulation of lasso
with a l1-norm penalty is as follows:

n∑
i=1

(yi − βxi)2 + λ||β||1. (2)

The lasso method can effectively select a sparse model by penalizing and forc-
ing coefficients of some variables to be zero. Assume k2 features are selected by
the lasso algorithm. The third step is to find the optimal feature subset by ex-
ploring the the k1 high-MI-ranked features and k2 lasso selected low-MI-ranked
features. Within a small set of (k1 + k2) features, it is possible to enumerate dif-
ferent combinations of feature subsets with a small feature pool. Feature subset
evaluation is based on leave-one-out cross-validation classification performance
using logistic regression. We propose to evaluate feature subset in an ascending
order of feature set size. In particular, we start with one feature, then combina-
tions of two features, combinations of three features, etc. The subset evaluation
stops when the cross-validation accuracy cannot be further improved. Then we
report the best prediction model with optimal feature subset. The proposed
mutual-information-guided sparse feature selection framework is shown in Fig-
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ure 1. Compared with other feature selection, the proposed framework combines
information theoretic criteria and sparse learning method to supervise feature
selection and discover the most important features efficiently.

3 Experimental Design for Epilepsy Diagnosis

EEG Data Acquisition In this study, EEG was recorded from a 128-channel
electrode array using a geodesic sensor net and Electrical Geodesics, Inc. (EGI;
Eugene, OR) amplifier system with signal amplified at a gain of 1000 and band-
pass filtered between 0.1Hz and 100Hz. During recording, EEG was referenced
to the vertex electrode and digitized continuously at 500 Hz. The placement of
the 128 scalp EEG electrodes is shown in Figure 2.
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Fig. 2. The placement of the 128 EEG electrodes in the experimental setup.

Visually Evoked Potentials Visually evoked potentials (VEPs) are electrical
potentials (usually EEG) recorded in presence of visual stimuli, and are distinct
from spontaneous EEG potentials recorded without stimulation. In particular,
the steady-state visually evoked potentials (SSVEPs) have been widely investi-
gated in the past 40 years and have been shown to be useful to analyze many
brain cognitive paradigms (visual attention, binocular rivalry, working memory,
and brain rhythms) and clinical neuroscience (epilepsy, aging, schizophrenia, mi-
graine, autism, depression, anxiety, and stress). SSVEPs are evoked responses
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induced by long stimulus trains with flickering visual stimuli. The steady-state
potentials are periodic with a stationary distinct spectrum showing stable char-
acteristic SSVEPs peaks over a long time period. It has been found that photo-
sensitivity is found to be common in patients with epilepsy, and visual stimula-
tion may engage the mechanism underlying hyperexcitability in the patients. A
series of experiments by Wilkins et al. indicated that spatial properties of visual
patterns can elicit epileptiform EEG abnormalities [11]. The epileptic response
was reported to be sensitive to luminance, with higher luminance inducing a
higher risk of epilepsy [12]. People with migraine or epilepsy are especially prone
to symptoms of visual perceptual distortions and visual stress on viewing flicking
striped patterns. In a recent study, Birca et al. showed that SSVEP harmonics in
the gamma range (50-100 Hz) have significantly stronger amplitudes and greater
phase alignment for patients with febrile seizures. In children with focal epilepsy,
a similar effect in the gamma range was shown by Asano et al. [13]. As patient
with epilpesy are prone to exhibit abnormal EEG responses to repetitive mod-
ulated flicking patterns, the resulting SSVEPs can be employed to discriminate
epileptic and non-epileptic patients in a short EEG test rather than a long-term
EEG monitoring often around or longer than 24 hours. The expermental de-
sign of this study is based on this observation. We make an attempt to test the
hypothesis that epileptic and non-epileptic EEG recordings during steady state
visual stimulation can be classified.

Experimental Design Eleven patients with epilepsy and eleven healthy sub-
jects were recruited in this experiment. The 11 patients had been diagnosed
with idiopathic generalized epilepsy (IGE) at University of Washington (UW)
Medicine Regional Epilepsy Center at Harborview. The patients with history
of photic-induced seizure or photoparoxysmal responses (PPR) were exclude in
order to minimize the risk of inducing seizures during the experiment. The 11
healthy subjects were selected from those who did not have a history of neurolog-
ical or psychiatric diagnoses such as migraine or schizophrenia. All the patients
and normal subjects had normal or corrected-to-normal visual acuity.

Each subject underwent the same experimental protocol during EEG record-
ing. Visual stimuli were consisted of a high contrast strip pattern presented on
a 19-inch LaCie Electron Blue IV monitor at a resolution of 800 × 600 pixels,
with a 72H vertical refresh rate and a mean luminance of 34cd/m2. The strip
contrast pattern flickering (condition 1) or switching (condition 2) at 7.5Hz and
the contrast level were temporally modulated by 10 levels from lowest contrast
(level 1) to highest contrast (level 10) periodically. Each contrast level lasted for
1.067 second with 16 reversals of the flicker pattern. Thus, each stimulus of 10
contrast levels was 10.67 second. Each subject performed 20 trials for condition
1 and 20 trials for condition 2 with brief breaks between trials. A typical session
of each subject is about 10-15 minutes.

Signal Processing and Feature Extraction The visual stimulation flick-
ing at a constant frequency can evoke harmonic oscillations and the SSVEPs
were found to have the same fundamental frequency (rst harmonic) as the visual
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stimulating frequency [14]. A recent study showed that the higher SSVEP har-
monics can also play an important role in studying brain functions [15]. In this
study, we extracted frequency features of SSVEPs by Discrete Fourier Trans-
form (DFT) with a 0.5Hz resolution for each EEG channel of each trial with a
time length of 1.067 second. The frequency components obtained from DFT are
subject to signal variations. If signal strengths are different, the DFT coefficients
are also different even the two time series signals share similar wave patterns.
EEG signal is known to have significant inter-individual variability [16], and the
signal amplitudes can vary considerable from one person to another. Thus, the
extracted DFT frequency components can be problematic in feature selection
and model construction across subjects. To tackle this problem, we introduced
an normalization step based on Parseval’s Theorem. Parsevals Theorem states
that the power spectrum summed over all frequencies is equal to the variance
of the signal. Based on this rule, we take standard deviation of a signal as a
normalization factor and normalize the signal to unit variance before applying
DFT.

From the normalized DFT frequency components, the components at stim-
ulation frequency (7.5Hz) and multiple of stimulation frequency (up to 9th har-
monics) were selected as signal features. Then a segment of EEG signal is repre-
sented by nine features that include nine harmonic frequency components that
may be informative. The feature extraction was applied to each EEG channel
of each trial for each subject. For each subject, the features from trials with
the same contrast level were averaged to be the features of the contrast level.
In summary, there are 128 (channel) × 10 (contrast level) × 9 (frequency com-
ponent) = 11520 features for each subject. In the next, we will present a new
feature selection approach to select the most informative features to discriminate
epileptic patients from normal subjects.

Assessment and Validation The feature subset assessment was based on
leave-one-out cross-validation procedure as shown in Figure 3. In order to re-
duce the bias of training and testing data, cross validation techniques have been
extensively to assess a classification model. In this study, we employed a leave-
one-patient-out cross-validation methodology in order to avoid the potential bias
of having EEG samples from the same patients in both the training and testing
data. We measured model classification accuracy by the average of sensitivity
and specificity. Sensitivity and specificity are widely used in the medical domain
as classification performance measures. we labeled the EEG samples from epilep-
tic patients as positive and those from non-epileptic patients as negative. The
sensitivity measures the fraction of positive cases that are classified as positive;
the specificity measures the fraction of negative cases classified as negative.

4 Computational Results

We performed our feature selection and classification approach for each of the
10 contrast level and each of the 9 harmonic frequencies independently. This
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Fig. 3. The leave-one-patient-out cross-validation procedure for model assessment.

experimental setup is specially designed to find out which contrast and which
harmonic frequency are most prominent to discriminate epileptic patients from
normal subjects. In the feature selection step, we selected the top ten high-
est MI feature set first, and performed Lasso to select additional features from
the remaining features with relative-low MI values. Once we finalize the feature
candidates (lasso-selected low-MI features and top 10 high-MI features), we enu-
merate feature subset starting from one feature. The feature combination with
the highest cross-validation classification accuracy was selected as the as the
optimal feature subset. The classification accuracies for each contrast level and
harmonic frequency are shown in Table I. We notice that the contrast level 7
and the 5th harmonic frequency generated the best validation accuracy of 90%.
There were six selected channels: 53, 54, 56, 75, 114, 119. Using prior knowl-
edge guided feature selection have very good interpretability to physicians and
neurologist.

We also compared three popular feature selection approaches, regular Lasso
feature selection [17], stepwise feature selection using statistical significance test
[6], Pudil’s floating search [5]. Table II shows the classification performance com-
parisons of our method with the three popular feature selection methods. The
feature subset picked up by our approach generated the highest cross-validation
accuracy of 90%, followed by the Pudil’s floating search with an accuracy of 85%.
Both regular Lasso and stepwise selection got the validation accuracy of 80%.
Also for the overall performance cross the 10 contrast levels and 6 harmonic
frequencies, the proposed approach achieved an overall accuracy of 61% while
performance of other methods were around 50% with larger standard deviation.
This indicates that the feature subset selected by the proposed approach had
better discriminative power than the feature subsets selected by the comparing
approaches. The experimental results confirmed that the proposed feature se-
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lection framework indeed works effectively to capture feature dependencies and
discover optimal feature subset. We combined high-MI features with promis-
ing low-MI features indeed generated stronger discriminative features that may
be ignored by most of the current feature selection algorithms. The proposed
information-guided sparse feature selection framework is capable of generating
a spare model with good interpretability while preserving the most informative
feature combinations to improve classification performance.

Table 1. The classification accuracies for 10 contrast and 9 harmonic frequency levels
using leave-one-patient-out cross-validation. The contrast level 7 and the 5th harmonic
frequency generated the best testing classification accuracy of 90%.

1F 2F 3F 4F 5F 6F

Contrast 1 0.57 0.62 0.71 0.62 0.57 0.62
Contrast 2 0.57 0.57 0.67 0.48 0.48 0.67
Contrast 3 0.62 0.57 0.48 0.62 0.57 0.52
Contrast 4 0.90 0.76 0.57 0.62 0.71 0.86
Contrast 5 0.57 0.52 0.67 0.62 0.52 0.48
Contrast 6 0.67 0.71 0.48 0.57 0.48 0.57
Contrast 7 0.76 0.62 0.81 0.52 0.90 0.48
Contrast 8 0.76 0.81 0.67 0.57 0.57 0.71
Contrast 9 0.67 0.62 0.57 0.48 0.57 0.62
Contrast 10 0.62 0.52 0.52 0.71 0.57 0.52

Table 2. The performance comparison of the proposed method with three popular
feature selection algorithms. The feature subset selected by the proposed approach
generated the best cross-validation performance cross 9 contrast and 10 harmonic fre-
quency levels.

Classification Performance Comparison Accuracy Statistics Over
of Best Feature Subset Contrast & Freq. Levels

Testing Contrast Harmonic Selected Mean Std.
Accuracy Level Freq. (×7.5Hz) Channels Accuracy

MI-Lasso 0.9048 7 5 53,54,56,75,114,119 0.62 0.10
Regular Lasso 0.8095 7 2 10, 14, 105, 114 0.49 0.17

Stepwise Selection 0.8095 3 2 32,40,61, 78,97 0.48 0.17
Pudi’s Floating Search 0.8571 8 2 62 0.48 0.15

5 Conclusions and Discussions

A quick and accurate epilepsy-screening tool could enormously reduce associated
healthcare costs and improve the current diagnosis procedure. To reliably recog-
nize if a patient has epilepsy, we developed a novel mutual-information-guided
sparse feature selection and classification framework to identify epilepsy-specific
patterns from visually-evoked potentials in a human-computer task. The ex-
perimental results confirmed that the proposed method achieved the best diag-
nostic accuracy compared with several popular methods. The proposed method
has a potential to help physicians to determine whether a patient is epileptic
or non-epileptic in a quick screening process. More importantly, the proposed
information-theory-guided sparse feature selection is an generally framework. It
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is also promising to help physicians and neurologists in recognizing abnormal
brainwave patterns in huge medical dataset with different brain imaging tech-
niques (such as EEG, MEG, and fMRI). The long-term goal of this study is to
develop a fast, reliable, and affordable epilepsy diagnostic system using short-
term interictal EEG signals. Such a system can revolutionize the current epilepsy
diagnosis practice with wide and convenient applications.
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