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Assessment of text relevance is an important aspect of
human–information interaction. For many search sessions
it is essential to achieving the task goal. This work investi-
gates text relevance decision dynamics in a question-
answering task by direct measurement of eye movement
using eye-tracking and brain activity using electroenceph-
alography EEG. The EEG measurements are correlated
with the user’s goal-directed attention allocation revealed
by their eye movements. In a within-subject lab experi-
ment (N 5 24), participants read short news stories of var-
ied relevance. Eye movement and EEG features were
calculated in three epochs of reading each news story
(early, middle, final) and for periods where relevant words
were read. Perceived relevance classification models were
learned for each epoch. The results show reading epochs
where relevant words were processed could be distin-
guished from other epochs. The classification models
show increasing divergence in processing relevant vs.
irrelevant documents after the initial epoch. This suggests
differences in cognitive processes used to assess texts of
varied relevance levels and provides evidence for the
potential to detect these differences in information search
sessions using eye tracking and EEG.

Introduction

Relevance is a central construct for information search

and retrieval (IS&R; Borlund, 2003; Hjørland, 2010;

Saracevic, 1975, 2007). We are interested in the human pro-

cess of making relevance judgments (RJs). Although users

can provide some reasons for RJs, the act of judging is opa-

que. A consequence is poor understanding of the factors

affecting RJs (Huang & Soergel, 2013). Understanding RJ

cognitive processes is a knowledge gap at the foundations of

IS&R. This research seeks to contribute to bridging this gap.

We use neurophysiological (NP) instruments to capture psy-

chophysiological signals while a user is making RJs while

engaged in information search.

Relevance research is extensive, ranging from theoretical

(Hjørland, 2010; Huang & Soergel, 2013; Saracevic, 2007),

to behavioral studies (Barry, 1994; Fitzgerald & Galloway,

2001; Taylor, 2012), and to applied and system-oriented

evaluation studies (Lesk & Salton, 1968; Ruthven, 2014).

RJs have a strong subjective component, yet there is surpris-

ingly little work on internal psychological factors. Theoreti-

cal work exists (Wilson & Sperber, 2002), but empirical

research addressing RJ cognitive and affective processes is

quite recent (Allegretti et al., 2015; Buscher, Dengel,

Biedert, & Elst, 2012; Moshfeghi, Pinto, Pollick, & Jose,

2013). Improved understanding of cognitive processes that

drive IS&R may eventually allow for causal accounts of

user information search behaviors.

Direct elicitation of user RJs poses challenges. Most users

will not make the effort to provide explicit relevance feed-

back (Back & Oppenheim, 2001), and reporting RJs can

reflect biases. Inferring relevance implicitly from user

actions is attractive (White, Ruthven, & Jose, 2002).
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However, many available signals such as dwell time (Kelly

& Belkin, 2004), click-throughs (Jung, Herlocker, & Web-

ster, 2007), mouse movement (Smucker, Guo, & Toulis,

2014), and other interactions (Kelly & Belkin, 2001), often

provide ambiguous evidence.

Inferring relevance from NP signals holds promise for

nonintrusive detection in natural settings. Here we investigate

relevance detection using eye tracking and electroencepha-

lography (EEG). Eye movements are cognitively controlled

(Just & Carpenter, 1987). Brain activity is detectable using

EEG. Visual attention to text is a central process for informa-

tion acquisition and judging relevance. Word understanding

can be distinguished from other higher-level cognitive pro-

cess in judging text relevance (Park & Reder, 2004).

This work concerns text RJs in the cognitive activities of

reading and judging news stories in a question-answering

task. We explore activity correlations using EEG and eye

tracking (EYE) during text processing of relevant words and

in three time epochs. For each epoch, EEG- and EYE-based

classification models of perceived relevance are learned.

Epoch model performance is compared to explore text proc-

essing differences when relevant text is recognized. Model

composition and performance differences can provide

insights into the cognitive processes of text RJ.

We have previously reported EYE data analysis for

whole documents (Gwizdka, 2014). To investigate user–

document interaction, we now present higher-resolution

analysis (1s, 2s). The main contribution is to show that there

are increasing differences in EYE and EEG data between

the relevant and irrelevant documents as text documents are

read. Another contribution is to demonstrate a low-cost EEG

device can be useful to infer RJs.

Related Work

Obtaining implicit relevance measures from user behav-

iors is an important research area in information retrieval

(IR). Here we focus on relevance-related work using eye

movement and EEG NP methods, which demonstrates the

plausibility of monitoring brain activity and related NP sig-

nals to detect aspects of relevance processes.

RJ is a user assessment about the usefulness of a text to

their task. It is produced by a complex cognitive process. IR

research shows external user behaviors are usefully, but

imperfectly, correlated with relevance assessments. Implicit

relevance indicators include search results click-through

(Dupret & Liao, 2010), document dwell time (Kellar, 2004;

Kelly & Belkin, 2004; Liu & Belkin, 2010; Liu, Liu, & Bel-

kin, 2014; White & Kelly, 2006), mouse movements (Cooke,

2006; Guo & Agichtein, 2010; Huang, White, & Buscher,

2012; Rodden, Fu, Aula, & Spiro, 2008; Smucker et al.,

2014), and text selection actions (White & Buscher, 2012).

Eye-Tracking

Eye-tracking is a familiar tool for IR relevance investiga-

tions. Ajanki, Hardoon, Kaski, Puolam€aki, and Shawe-

Taylor (2009) used eye-movement-based features to select

additional query terms in an implicit relevance feedback sys-

tem. Regressions and first fixation were most useful. In a

think-aloud study by Balatsoukas and Ruthven (2012), users

made more frequent and longer fixations on nonrelevant

document surrogates. However, research avoiding the cogni-

tive process of think-aloud (Gwizdka, 2014; Villa & Halvey,

2013) shows not-relevant documents impose the lowest

mental load.

Buscher et al. (2012) found the strongest indicator in text

passage relevance was length of text read, whereas fixation

duration was uncorrelated. Simola, Saloj€arvi, and Kojo (2008)

improved search task performance using eye-movement fea-

tures. Oliveira, Aula, and Russell (2009) investigated pupil

dilation (PD) and showed relevant images led to increased PD.

Marcos, Gavin, and Arapakis (2015) studied eye and

mouse movement behaviors on SERP snippets incorporating

images, multimedia, and text. They developed measures of

noticeability and interest using fixations, and conversion

(RJs) using click-through.

EEG

IS&R has little EEG work as compared to extensive cog-

nitive psychology research, where visual search and target

differentiation is most germane to IR research. Eye-fixation-

related potentials (EFRPs) combines event-related potentials

(ERPs) based on stimulus EEG signals and eye fixations to

define epoch timing. Brouwer, Reuderink, Vincent, van

Gerven, and van Erp (2013) showed the use of ERPs to

detect designated visual targets (accuracy 0.62). Healy and

Smeaton (2011) extracted a P300 ERP that could identify

cases where the visual target was disclosed beforehand.

They inferred an EFPR from electro-oculographic EEG arti-

facts. EEG activity for nonprimed visual target recognition,

which required participant judgment, began at �250 ms and

persisted for 500–1,000 ms.

EEG IS&R work has investigated word processing EEG

signals. Frey et al. (2013) investigated short text search (�5

lines, 30 words total). They found post-RJ brain wave differ-

ences in processing relevant and irrelevant words that per-

sisted for one word after a relevant word (�260–320 ms)

and two words after an irrelevant word (�500–530 ms).

Eugster et al. (2014) demonstrated frequency spectrum and

ERPs (450–747 ms) could distinguish relevant and irrelevant

terms (0.67 accuracy). Allegretti et al. (2015) showed image

RJ brain activity peaks �500–800 ms after onset with evi-

dence for cognitive processes during 300–500–800 ms.

EEG data, facial expressions, and eye gaze were used to

model image tag relevance (Soleymani, Kaltwang, & Pantic,

2013). They found that tag relevance detection using eye

gaze alone performed better at the top of rankings and over

the entire list.

Inexpensive EEG Devices

We used an inexpensive EEG device (Emotiv EPOC)

that, although less sensitive than medical-grade devices, has
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been used successfully in research (Abbott & Faisal, 2012;

Bobrov, Frolov, Cantor, Bakhnyan, & Zhavoronkov, 2011;

Khushaba et al., 2012; Ramirez, Palencia-Lefler, Giraldo, &

Vamvakousis, 2015; Wang, Gwizdka, & Chaovalitwongse,

2015). ERP analysis limitations exist (Duvinage et al. 2013),

but Badcock et al. (2013) reported successful ERP analysis

using the EPOC. We use it for power spectrum analysis fol-

lowing other researchers, including investigation of cogni-

tive workload (Wang et al., 2015), graph understanding

(Anderson et al., 2011), and silent reading (Knoll et al.,

2011). Another application has been classification in a target

pointing and selection task (Kim, Kim, & Jo, 2015). Bobrov

et al. (2011) found EPOC classification performance was

comparable to a medical-grade device (BrainProducts Acti-

Cap, Gilching, Germany) in a task with recognition of two

image types (face or house) and a relaxation state (3-class

accuracy [EPOC ActiCap]: overall 0.48 vs. 0.54; best 0.62

vs. 0.68; Bobrov et al., 2011).

Summary

Research has established that text relevance affects how

the text is read and images viewed. These differences are

reflected in EYE and EEG measures. NP methods using

brain waves, eye movement, and PD dynamics can be used

to study changing mental states in information search and

detection of RJs. The reported EEG RJ studies employed

medical-grade EEG devices. To our knowledge, no prior RJ

research has employed low-cost EEG devices. Furthermore,

those studies are limited to words, very short texts (� 30

words), or images. Our work seeks to gain better understand-

ing of RJs and dynamics of processing texts in significantly

longer text passages.

Method

Research questions:

RQ1. Does the text document relevance affect person

eye-movement and brain activity, as measured by EEG, dif-

ferently at early, middle, late stages of reading?

RQ2. Can periods of reading relevant words be distin-

guished from periods of reading irrelevant documents using

eye-tracking and EEG data?

RQ3. Can text document relevance be plausibly inferred

from EEG signals obtained from a low-cost device alone

and in combination with EYE data?

Experiment/Participants

We conducted an Institutional Review Board (IRB)-

approved lab experiment in which undergraduate and gradu-

ate student participants (N 5 24; nine females; native

English speakers; normal or corrected vision) were asked to

find information in short news story texts. Each participant

received $25.

Apparatus

A 1700 Tobii T-60 eye-tracker (128031024) and an Emotiv

EPOC EEG wireless headset (Figure 1) producing 2,048 sam-

ples/s (internally downsampled to 128 samples/s) using 14

channels, with positioning using the international 10/20 EEG

format (Figure 1). The Emotiv EPOC device wirelessly cap-

tures EEG signals. However, in practice the acquired signals

may be a mixture of electrical signals due to brain activity

(EEG), eye movement (EOG), and other signals related to,

for example, facial muscle activity. The latter two types of

signals may be captured by the Emotiv system due to several

prefrontal locations of electrodes (AF3 and AF4). Throughout

the article, we use the term EEG signals to refer to the signals

acquired by the Emotiv system, keeping in mind that sources

of these signals may not be limited to brain activity. Partici-

pants were seated �65–75 cm from the monitor under fluo-

rescent ceiling lights. Text lines spanned �0.98 of visual

angle (32 pixels; 19pt Verdana font) and were displayed in a

10203900 region to optimize eye-tracker accuracy.

Procedure

We conducted a within-subject experiment where each

participant performed the following two types of tasks: (a)

FIG. 1. Emotiv EEG headset with electrode positions in 10/20 system.
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target word search (WS task) and (b) a simple question/

answer information search (IS task). The experiment started

with a WS and IS training task and the experiment session

lasted about 75 minutes. WS and IS tasks were presented in

balanced order. For this paper’s research questions, only the

IS task results are germane. The IS task is a simulated search

task with human RJ. The question can be considered a simu-

lated query with three news story texts as the top three

search results. Overall, there were 21 questions followed by

three short news stories each (the trials) and lasted a mean of

38 minutes (SD 5 2.5). Figure 2 shows the stimulus sequence

and timing for a single IS QA instance. The text documents

were selected to cover a diversity of news topics. The experi-

ment was presented using a fully automated process with con-

trolled timing except for the text display duration, which

ended when the participant responded with an RJ.

The IS task block started with general task instructions

(30 seconds). The task goal was to find factual information

in news stories that provided an answer to a question. The

information target was presented as a question (8 seconds).

Then a fixation cross appeared for 4 seconds to center the

participant’s eye gaze. Then the first news story was shown,

followed by another fixation cross (4 seconds). To remind

participants of the current question, it was repeated briefly

(4 seconds) before the second and third document (Figure 2

“target info”). Fixation crosses were inserted between each

of the news stories and the question reminders. Participants

were asked to decide if the document contained an answer

to the question or not and so a binary scale was used. The

questions were factual in nature, for example: “Which Rus-

sian fleet was submarine Kursk part of?” News-story texts

were presented for up to 20 seconds or until the participant

pressed a key. This time limit was learned in pilot testing to

ensure that participants could comfortably read the story and

make a decision. The questions were presented in random-

ized order. Within a question block there were three trials;

each trial was a news story text that was either:

• Irrelevant (I): a news-story on a topic different from the

question,
• Topical, or partially relevant (T): a news-story on the ques-

tion’s topic, but not containing the question answer,
• Relevant (R): a news-story containing an answer to the question.

The new-stories were rotated within a question block in a

pseudorandom manner using the following process. Each

block contained one relevant document (R) and a combination

of topical (T) or irrelevant (I) documents. Thus, within each

question block there were the following three possible combi-

nations of relevance levels: (a) RTT, (b) RTI, (c) RII. These

combinations can be permuted in three, six, and three ways,

respectively, yielding 12 orders: for RTT combination: RTT,

TRT, TTR, for RTI: RTI, RIT, IRT, ITR, TRI, TIR, and for

RII: RII, IRI, IIR. These 12 orders were used to create a

sequence of 21 question blocks (nine of them were repeated

twice; 12 1 9 5 21). The sequence of 21 question blocks was

randomized. We followed this procedure to avoid exposing

participants to similar orders of document relevance from

which they could plausibly learn patterns and try to guess rele-

vance levels. A participant saw each document exactly once.

It is important to note that participants were told that in any

block some, all, or none of the stories could be relevant. This

was done to enhance the ability to treat each text as involving

an independent RJ.

The 21 IS task question blocks were further divided into

“overt” and “covert” blocks. The overt block contained 14

question blocks (with 14*3 5 42 trials). In this block partici-

pants responded explicitly by pressing one of two keyboard

buttons marked “yes” or “no.” These explicit ratings of doc-

ument relevance by participants are called perceived rele-
vance in this article and are the focus of our analysis. In

presenting the results, we call documents judged as relevant

Rp-trials and documents judged irrelevant Ip-trials. We do

not report data from the covert blocks in this article.

Document Corpus

Questions and relevance assessments were taken from

the TREC 2005 Q&A track (Voorhees, 1998) which used

AQUAINT corpus news stories (Graff, 2002). We selected

65 news stories (63 IS task, two training) with low text

length variation and one or two paragraphs. The TREC rele-

vance assessments were manually verified. The word screen

coordinates were automatically extracted to match the eye

fixations on the relevant words.

Data Preprocessing & Analysis

Data Cleanup

After data cleanup, our analysis was performed on 744

trials. Table 1 summarizes the steps.

FIG. 2. Experimental design (task IS).
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Step 1: Poor-quality EYE data records (Tobii validity <4)

and off-screen fixations were removed (�5% of fixations).

Minimal continuity of eye-tracking data was enforced. We

removed trials with gaps longer than 1 second (Oliveira
et al., 2009), or >20% missing data or fewer than four fixa-

tions on a document. Remaining trials with small EYE data

gaps (possibly a result of eye blinks) were treated by merg-

ing pupil measurements for both eyes, using the mean if
both were captured, or by using one eye if the other eye

was “lost.” A linear interpolation algorithm was applied to

the remaining pupil data gaps.

Step 2: The relevance level (I/T/R) distribution of the

remaining trials was not equal. To gain a more uniform distri-
bution of document relevance degrees and text lengths, we

removed data from “long” (�310 words) irrelevant docu-

ments to better match the document characteristics of the

remaining topical and relevant trials. The resulting trial col-
lection had an average document length of 178 words

(SD 5 30) with relevance level distribution: I/T/R (19/21/19).

EEG data issues affected 34 trials (Step 4, below). It is

reasonable to think the missing observations were random

because the dropped trials were a result of data collection

errors.

The following preprocessing steps were performed on

EEG data:

• Data for channels 5, 10 (T7, T8 Figure 1) was re-referenced.
• Applied a 1–40 Hz bandpass filter.
• Signal mean was removed (trimmed mean for middle 90%

percentile).
• ICA analysis was performed and artifacts (eye movement,

blinks, etc.) removed.

Artifact Removal

Raw EEG data contains artifacts from eye movements,

facial muscle contractions, and electric device interference.

Independent component analysis (ICA) was used to decom-

pose brain signals into signal components associated with

the artifact generators using pattern and artifact source local-

ization analysis. Some artifact sources (e.g., eye blinking,

muscle movements) present challenges for across-

participants analysis because they are user dependent. We

used ADJUST (Mognon, Jovicich, Bruzzone, & Buiatti,

2011) to process our data.

EYE Features

Eye movements were analyzed using a model (Cole

et al., 2011; Cole, Gwizdka, Liu, Belkin, & Zhang, 2013)

influenced by E-Z Reader (Reichle, Rayner, & Pollatsek,

2003). The reading model assumes words are processed seri-

ally one at a time. A single fixation can result in processing

more than one word when the next word in the reading

direction is identified in parafoveal view (Rayner, 1975;

Schotter, Angele, & Rayner, 2011). The model assumes a

minimum fixation time (150 ms) is required to acquire word

meaning. These assumptions have strong empirical support.

Fixations of >150 ms were grouped into continuous reading

sequences (labeled “R”) or isolated scanning fixations (“S”).

Saccade distances were calculated for reading sequences.

Under constant illumination, pupil dilation is associated

with several cognitive functions, including interest (Krugman,

1964) and changes in attention (Hoeks & Levelt, 1993;

Wierda, Rijn, Taatgen, & Martens, 2012). We controlled lab

environment lighting and text document formatting (black

background, white font, and low word number variability) to

achieve almost no variability of luminance across all trials.

We removed individual variability in pupil sizes and pupil-

lary response. We calculated relative change in pupil dilation

(RPDi
t) from pupil measurement at a time t Pt and participant

pupil baseline (Pi
baseline), where baseline is the average pupil

size over all text document presentations (Eq. 1).

RPDi
t5 ðPt2Pi

baselineÞ=Pi
baseline (1)

We calculated 25 eye-tracking data features (Table 2).

EEG Features

EEG signal features were extracted to capture brain activ-

ity (Table 3).

To represent an EEG data epoch, univariate features were

extracted from each EEG channel and concatenated with the

multivariate features to make a feature vector. EEG signals

have high individual variability, so for across-participants

analysis we performed personalized feature standardization

(Wang et al., 2015).

Data Segmentation for Classification

Intuition and initial data exploration suggested that ini-

tial document reading would be similar across the rele-

vance conditions. Changes in reading relevant and

irrelevant documents, and the associated cognitive pro-

cesses, were expected to occur both later and closer to the

relevance decision. We expected variation for relevance

decision timing because the location of the relevant

TABLE 1. Data cleanup summary.

Data cleanup step # Trials Quantity

0. Original data Total number of trials 1,008 (24 participants * 42 overt trials)

1. EYE data cleanup Trials with good EYE data 907

2. removal of irrelevant docs Trials balanced with respect to doc. relevance 791

3. EEG data missing for 1 person Total trials with recorded EEG data 945 (no data for 1 participant)

4. EEG data cleanup Trials with good EEG data 911

5. after EYE and EEG cleanup Total trials (EYE 1 EEG) with good data 744
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information (if any) was not controlled. Given the large

variation in trial reading time, we selected from each trial

three representative equal-length time epochs positioned at

the beginning, in the middle, and at the end of a trial (Fig-

ure 3). Selecting data epochs from such different parts of

trials enables us to investigate temporal dynamics of eye-

tracking and EEG signals. To address RQ1, we compared

binary classification model performance (for perceived rel-

evant vs. irrelevant text) learned in each data epoch (classi-
fications A). Additional epochs were defined based on the

timing of reading sequences that contained either the first

(first-Rfix) or the last (last-Rfix) eye-fixations on relevant

words (in Rp-trials). Data from each such segment is com-

pared, separately, with data from beginning, middle and

end of Ip-trials. Notice that a reading sequence represents

plausibly a coherent unit of reading more so than isolated

fixations on individual words, so epoch analysis using

reading sequences is interesting. These data epochs were

used in classifications denoted “B” to investigate RQ2. The

epochs are illustrated in Figure 3.

We investigated epoch classification performance

changes using two epoch lengths, 1,000 ms and 2,000 ms,

TABLE 3. EEG features (50 types of features in 16 groups; 569 features in total).

Feature Description

Signal statistics Mean, SD, skewness, kurtosis

Morphological features Curve length, zero crossings, number of peaks

Average nonlinear energy A measure sensitive to signal power spectral changes

Power spectral features 50%, 90%, 95% spectral edge frequency

Band power For four frequency bands*

Relative band power Power ratios for each frequency band*

Interhemispheric asymmetry Power ratios between right-left hemisphere channel groups** for 4 freq. bands*

Intrahemispheric asymmetry Power ratios within right-left hemisphere channel groups** for 4 freq. bands* (Cvetkovic & Cosic, 2009)

Hurst exponent Measures EEG nonstationary dynamics (Hwa & Ferree, 2002)

Hjorth measures Activity, Mobility, Complexity (Hjorth, 1970)

Barlow measures Mean amplitude, mean frequency, and spectral purity index (Goncharova & Barlow, 1990)

Wavelet entropy Calculated from wavelet coefficients; indicates the degree of multi-frequency signal order/disorder in EEG.

Relative wavelet energy For four frequency bands*

Ratio of Alpha to Beta Band Power Relative changes between alpha and beta band signals

Range to Variance Ratio

Connectivity network features Fraction of channel pairs with correlations>C which can be 0.1, 0.2, . . ., and 0.9. The ratio indicates

overall EEG connectivity strength given a value of C.

*theta: 4–8 Hz, alpha: 8–13 Hz, beta: 13–25 Hz, low gamma: 25–40 Hz.

**Four channel groups: frontal-left (AF3, F7, F3, FC5), frontal-right (FC6, F4, F8, AF4), back-left (P7, O1), and back-right (P8, O2).

FIG. 3. Illustration of the data epochs with respect to timing of a trial. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 2. Eye-tracking features (25 features in total).

Group Feature Description

Pupil RPD Relative change in pupil diameter, normalized to a user’s mean value: Mean, STD,

and 5 percentiles (10 25 50 75 90)

RPD moving-average Moving average of the 1st order difference (gradient) of RPD with a lag of 10: Mean,

SD, min, max, and 3 percentiles (25 50 75)

Reading

sequence

Fixation duration Mean, SD, Sum of fixation durations

Fixation count Number of fixations in a reading sequence

Saccade distance Mean, SD, Sum of Euclidian distances between fixations in a sequence

Scanning

fixations

Fixation duration Mean, SD, sum of fixation durations

Fixation count Total number of isolated scanning fixations

6
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which are expected to reflect signal dynamics during rele-

vance decisions. Prior EEG research showed relevant stimu-

lus discrimination at 300–800 ms after onset (Allegretti

et al., 2015; Eugster et al., 2014; Frey et al., 2013). Eye-

tracking research has shown the last 1,000 ms and 2,000 ms

in a trial as significant (Gwizdka, 2014; Gwizdka & Zhang,

2015). Data sampling rates were 128 Hz (EEG) and 60 Hz

(eye-tracker). The mean fixation duration was 239 ms

(SD 5 91 ms). Given the expected rise time of EEG rele-

vance signals (<1,000 ms), we set 1,000 ms as the shortest

epoch length. End-trial epochs avoided motor control brain

activity (key press) by removing the last 200 ms.

Feature Selection

We used 569 EEG features (Table 3) and 25 EYE fea-

tures (Table 2). Minimum redundancy maximum relevance

(mRMR; Peng, Long, & Ding, 2005) was used to identify

the most informative features associated with relevance

decisions. mRMR selects the most relevant feature subset

with minimal redundant features using mutual information

analysis and is frequently used in bioinformatics (Saeys,

Inza, & Larra~naga, 2007).

Classification Method

Proximal Support Vector Machines (PSVM; Fung & Man-

gasarian, 2001) were used to model EEG and EYE feature

patterns for relevant and irrelevant documents. Three feature

sets were used (EEG, EYE, and EEG 1 EYE features).

Binary classification models (target: perceived relevance)

were created for epoch and trial selection combinations. Input

was from data epochs using the 12 different timing criteria

(see Data Segmentation for Classification). Models were con-

structed from all trials, and trials with correct responses. We

constructed 162 perceived relevance classification models (3

epochs * 12 timing criteria * 3 feature sets * 2 trial selection

criteria) from the EEG and eye-tracking signals.

TABLE 4. Classifications A (epoch 2,000 ms-long).

Feature Compared Epochs AUC ACC Sen1Spe 2 Sensitivity Specificity

EEG Beg 0.57 0.55 0.53 0.58 0.47

Mid 0.60 0.60 0.58 0.62 0.55

End 0.59 0.65 0.54 0.83 0.24

EYE Beg 0.56 0.40 0.52 0.19 0.85

Mid 0.70 0.66 0.65 0.67 0.63

End 0.80 0.72 0.71 0.74 0.67

EEG1EYE Beg 0.55 0.46 0.52 0.35 0.69

Mid 0.70 0.66 0.65 0.69 0.60

End 0.79 0.71 0.71 0.73 0.68

TABLE 5. Classifications B.

Features Ip-trial epoch AUC ACC (Sen1Spe)/2 Sensitivity Specificity # Rp-trials # Ip-trials

Epoch 1,000 ms-long.

EEG beg 0.56 0.57 0.53 0.66 0.41 165 290

end 0.64 0.60 0.59 0.61 0.57 165 279

EYE beg 0.95 0.86 0.87 0.84 0.89 165 290

end 0.78 0.72 0.72 0.74 0.69 165 279

EEG1EYE beg 0.96 0.87 0.88 0.86 0.90 165 290

end 0.78 0.72 0.71 0.73 0.70 165 279

Epoch 2,000 ms-long.

EEG beg 0.79 0.81 0.69 0.93 0.45 165 290

end 0.77 0.76 0.69 0.97 0.41 165 279

EYE beg 0.88 0.79 0.79 0.81 0.76 165 290

end 0.77 0.71 0.71 0.74 0.68 165 279

EEG1EYE beg 0.91 0.83 0.82 0.89 0.75 165 290

end 0.85 0.80 0.76 0.83 0.69 165 279

FIG. 4. Conceptual illustration of diverging differences in Classifica-

tions A results.
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Training and Evaluation

The PSVM classifiers were trained and evaluated using

10-fold cross-validation. Model sensitivity and specificity

(Eqs. 2, 3) were used to evaluate the classification perfor-

mance. Overall performance was measured as the average of

sensitivity and specificity.

sensitivity5
# of correctly classified samples of relevent judgement

total number of samples of relevent judgement

(2)

specificity5
# of correctly classified samples of irrelevent judgement

total number of samples of irrelevent judgement

(3)

Results

Participant RJ accuracy was 90.3%, confirming the tasks

were performed as expected. The average text reading time

was 10.4 sec (SD 5 5.2 sec), well within the 20-second limit,

and is evidence there was little time stress on participant RJ.

The binary classification of the perceived relevance of

the whole trial EEG and EYE data was: EEG features

AUC 5 0.60; accuracy (ACC) 5 0.54–0.60; for EYE fea-

tures AUC 5 0.76–0.78 and ACC 5 0.69–0.71. EEG-only

classification was barely better than random, whereas the

EYE classification was reasonably good. This is evidence

that relevance judging effects may be detectable in EYE

data but not EEG signals at the level of reading whole text

documents.

Tables 4 and 5 present epoch-level classification model

performance of two types for the trials with correct

responses. Classifications A (Table 4) compares Rp-trials

with Ip-trials separately within each of the three epochs:

beginning, middle, and end. Classification performance

tends to improve from beginning to final epoch (Figure 4),

and is strongest for EYE (final epoch AUC 5 0.80,

ACC 5 0.72). Figure 5 shows comparison of classification

A performance for EYE data.

Classifications B compared first-Rfix and, separately,

last-Rfix epochs with beginning and end data epochs on Ip-

trials (Table 5). Classification performance is better for last

fixations than for first fixations on relevant words and there-

fore we present only data for last-Rfix epochs. Classification

B epochs are illustrated in Figure 6.

Table 5 shows that EYE feature classification models

performed better for 1,000 ms-long epochs, whereas classifi-

cation of EEG performed better for 2,000 ms-long epochs.

This may indicate that EYE and EEG models “tune” to dif-

ferent cognitive processes or phases of a process. Classifica-

tion performance is better in comparing relevant epochs in

Rp-trials with beginning epochs vs. final epochs in Ip-trials.

TABLE 6. Three best EYE features for Classifications A (epoch 1,000

ms-long).

Best features

p values for epochs

beg middle end

RPD – 25th percentile 0.54 6*1026 ** 1.3*10211 ***

RPD – mean 0.50 2*1025 ** 2.1*10212 ***

RPD – 10th percentile 0.47 3*1025 ** 8*1029 ***

Significant differences at: **p< .001; ***p< 1028.

FIG. 5. Comparison of classification A performance for beginning, middle, and end epochs of eye data.

FIG. 6. Conceptual illustration of Classifications B.
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Adding EEG features to EYE features does not improve

models at 1,000 ms-long epochs, but mildly improves 2,000

ms-long epoch models (0.03–0.08).

Best Features

Important model features were calculated for selected best

perceived relevance prediction models (see Feature Selec-

tion). The better performing classifications A were for EYE

features. The t-tests show significant differences between the

best feature values for Rp-trials and Ip-trials for middle and

end epochs, but not for beginning epochs (Table 6).

The best performing classifications B were for

EEG 1 EYE for last-Rfix epochs vs. reading beginning of

Ip-trials (lower-part of Table 5). For these epochs, the six

most important EYE and EEG features were calculated

(Table 7). Differences between such features were statisti-

cally significant (Table 7) and are shown for normalized fea-

ture values in Figures 7 and 8.

The best EEG features were kurtosis and wavelet entropy

(WE) for channel FC5 and zero-crossing (ZC) for channel

TABLE 7. t-tests for best six features (EEG, EYE).

EEG Feature ZC,Ch:P8 WE,Ch:FC5 Kurtosis,Ch:FC5 ZC,Ch:T7 WE,Ch:P7 ZC,Ch:O2

p-value 1.17*10224 7.8*1027 1.48*1026 6.16*10226 5.3*1028 5.52*10225

EYE Feature Reading-total

duration

Reading-total

distance

Scanning fixation

duration SD
Reading fixation

duration SD
Scanning total

duration

Reading-distance

SD

p value 1.23*10213 3.68*10215 1.55*10215 2.89*10215 5.15*10218 1.92*10210

Note. SD 5 standard deviation.

FIG. 7. Boxplots for the top six EEG features for Rp-trials (last Rfix) versus Ip-trials (ending epoch): Classifications B.

FIG. 8. Boxplots for the top six EYE features for Rp-trials (last Rfix) versus Ip-trials (ending epoch): Classifications B.
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P8. The WE characterizes the order or disorder of signal

power for the five brain signal frequency bands (delta, theta,

alpha, beta, gamma). We may be sensitive to capturing brain

dynamic changes in the text reading task (e.g., related to

changes in mental load). Frequency of zero-crossing tends to

change with changes between mental states. High kurtosis

has more peaks as compared to the baseline. The kurtosis in

Rp-trials was higher than in the Ip-trials. The best EYE fea-

tures were related to reading type (i.e., continuous reading

vs. scanning). Figure 9 shows, separately for EYE and EEG,

how the three best features discriminate between Rp-trials

and Ip-trials.

Discussion

We started with three research questions. RQ1 concerned

differences in the dynamics of eye-tracking and EEG signals

in reading relevant and irrelevant documents. RQ2 con-

cerned differences between eye-tracking and EEG signals

during reading relevant words vs. reading irrelevant docu-

ments. Finally, in RQ3 we wanted to learn the potential of a

low-cost wireless EEG device to predict perceived rele-

vance. We focus on perceived relevance because of the asso-

ciation with the participant’s cognitive processes during the

trials.

For RQ1, we found interesting results in the temporal

dynamics of eye-tracking and EEG signals at the three dif-

ferent temporal stages of relevant and irrelevant document

processing (Classifications A). As reading progressed there

was an increasing difference in performance of classification

A for beginning, middle, and epochs. This difference was

particularly evident in EYE-feature classification models,

and was also seen in EEG-feature models. Differences in

pupil dilation and fixation-based measures between relevant

and relevant documents increased as the documents were

read (Figure 4). These may reflect differences in cognitive

processes detected by eye-tracking and EEG.

For RQ2 and classifications B, the EYE and EEG models

show differences in reading relevant words compared to

reading parts of irrelevant text. EYE models provided good

classification performance for perceived relevance (best for

1,000 ms, AUC 5 0.95 and ACC 5 0.86, upper part of

Table 5). This is evidence that reading relevant text affects

eye movement patterns and pupil dynamics. The greatest

difference for eye-tracking data was found between the last

pass through relevant words in Rp-trials (last-Rfix) and the

beginning of Ip-trials. Differences between reading relevant

words and the ending epochs of Ip-trials were still large

(AUC 5 0.77–0.78).

The Classifications B results provide evidence that EEG

signals can distinguish RJs. The best performance levels

(AUC 5 0.79 and AUC 5 0.81) were found for final reading

of relevant words (last-Rfix) versus reading beginning of an

irrelevant text for 2,000 ms-long epochs (lower part of

Table 5). Classification performance was diminished for

other epochs. One possible explanation is an RJ was made dur-

ing a final pass through relevant words, resulting in detection

of cognitive activity that differed from that of reading text.

Does the addition of EEG data improve the EYE models?

The best combined EYE 1 EEG models (best AUC 5 0.96

and ACC 5 0.87; for 1,000 ms epochs) were derived for the

cases that also had the best EYE models. The performance

improvement was only 0.01–0.02 (for AUC/ACC). How-

ever, in other cases combined EYE 1 EEG data increased

classification performance by 0.01–0.08 as compared to

EYE data alone. These were cases where EYE feature clas-

sification performance was lower and more similar to EEG

performance (e.g., for 2,000 ms-long epochs and for end

epoch for Ip-trials with epoch from last fixation on relevant

words with AUC 5 0.77–0.78 for EYE, AUC 5 0.77–0.79

for EEG; lower part of Table 5). Thus, there is a positive

result for RQ3 but only for selected situations.

Relating the EEG model and feature results to specific

brain areas and their function is not well supported by our

method and the Emotiv EEG device. Scalp electrodes do not

reflect particular areas of cortex, as the active sources are

hard to localize due to nonhomogeneous skull properties and

orientation of the cortex sources (Nunez, 2002). Despite

these limitations, we can speculate and relate EEG electrode

location to basic brain function. We found the most

FIG. 9. Three EYE (left) and EEG (right) features that best discriminate between last-Rfix and the reading at the end on an Ip-trial.
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discriminative features were from channels P7, P8, O2, T7,

and FC5, that is, from frontal-central (FC), temporal (T),

parietal (P), and occipital (O) lobes (Figure 1). Based on

localization of Brodmann areas (2007), one can speculate

that brain activity captured by channel FC5 may be related

to verbal reasoning; T7 to certain memory functions and

auditory processing; T7 and P7 to verbal and reading com-

prehension (near Wernicke’s area; DeWitt & Rauschecker,

2013); and O2 to visual processing.

The 1- to 2-second epoch classification results were supe-

rior to the whole trial results for both devices. The shorter

epochs match better with the timespan of distinct cognitive

processes. Data collected over longer periods likely mixes

the activity of multiple processes. This points us towards

ERP study design and data analysis, but a low-cost EEG

device may be too limited (Duvinage et al., 2013). Sliding

time window analysis may be an effective procedure to infer

relevance in near real time and this is one plan for future

work. We also plan to study longer text documents, more

complex search tasks, and multistage search sessions.

Taken together, the results provide an insight into differ-

ences between eye-tracking and EEG, and, possibly, into the

differences between cognitive processes involved in reading

text documents and judging their relevance. The eye-

tracking data provides good support in this regard. The EEG

results with a low-cost wireless device were consistent with

EYE data. It seems fair to say that this type of EEG device

can detect differences in judging relevant and irrelevant

documents when distinctly different cognitive processing is

used, as in relevance decision-making.

The best EYE features overlap with those reported in

Gwizdka (2014) for classifications at the level of whole doc-

ument trials. The two sets of the selected best EYE features

for Classifications A and B are different (Tables 6 and 7).

They reflect characteristics of pupil dilation vs. reading pat-

terns (i.e., continuous reading and scanning), respectively.

Pupil dilation increased as participants continued to read rel-

evant documents. Reading relevant words differed from

reading irrelevant text in longer fixations and higher propen-

sity for reading than for scanning (Figure 8).

The differences in the best models by epoch is an espe-

cially encouraging result of this work because of real-world

noise that might be expected to make detection of cognitive

processing of relevant documents difficult. For relevant

documents the location of the relevant words in one docu-

ment might be near the beginning of the text and in another

in the middle or near the end. This reflects real-world infor-

mation search. Likewise, one expects some variance in user

behaviors after processing relevant words. For example, one

might be biased to stop reading immediately, whereas

another might continue to read for a while. All of these real-

world situations introduce noise into our modeling of the

processing of relevant and irrelevant documents.

Despite this noise, we obtained models that can discrimi-

nate between the time series observations of reading relevant

vs. irrelevant documents with expected divergences in clas-

sification performance. Model performance should be

improved by taking account of individual differences in

reading patterns of relevant and irrelevant documents.

Improved models might also further distinguish the shift in

feature importance. The results provide clear evidence that

participants were performing some cognitive process in a

distinguishably different way in the late epoch depending on

the relevance of the document. As shown in Figures 7 and 8,

the differences in values of the top six EEG and EYE fea-

tures extracted from epochs starting at the onset of reading

last relevant words vs. ending epochs on Ip-trials are statisti-

cally significant.

The divergence in measurements (EEG 1 EYE) when

relevant text was being processed as compared to processing

irrelevant text (i.e., when no positive RJ was made) indicates

the user might be in a distinguishably different state while

reading relevant text and, in particular, before and after the

RJ. These changes of state are reflected in changed reading

behaviors and brain activity. Such brain activity and behav-

ior differences might be explained by changes in the user’s

knowledge and changes in immediate or overall task goals.

Our study was not able to address these speculations because

the experiment blocks (each with a question and three texts

that might contain an answer) were fixed. A future study

could be designed as a multistage task where identification

of a relevant answer to the initial question would invoke a

knowledge gain that enables understanding of the task

requirements for a follow-up question.

A challenge is to identify user responses when they

encounter the relevant information. One could be user’s sat-

isfaction with achieving a task goal; another, learning and

gaining a new perspective on the task goal because of gained

knowledge. Plausibly, the first has an affective component,

whereas the second cognitive. NP research tools provide

ways to investigate differences between affective causes of

search behaviors and cognitive effects. Other data collection

methods, such as self-reporting, think-aloud protocols, or

posttask reflection are subjective. This indicates the potential

for NP-methods to contribute to the foundations of IS&R.

We term this new approach neuro-information science.

Limitations

Tobii T60 eye-tracker has a reported accuracy of 0.58; in

practice, the accuracy may be lower. It limited our ability to

identify fixations on relevant words in all trials (Rp-trials

success: 72%). Classifications were performed only across

all participant data. The potentially significant negative

effects of individual differences were mitigated by perform-

ing personalized feature standardization.

This study focused entirely on topical RJs and used tasks

similar to the Cranfield single task query and document unit.

Such judgments are an important element of many search

sessions. We believe that this narrower focus of our study is

a good starting point for further research that can investigate

the richness of cognitive processes in extended complex

search sessions.
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Conclusions

To our knowledge, there is no prior work applying this

kind of relevance analysis to EEG and eye-tracking data.

This is our main IS&R contribution. Our work is exploratory

in nature, and we have offered speculative explanations for

the EEG and EYE perceived relevance classification results.

This is a view of temporal reading process dynamics in the

context of a relevance decision process. The selected eye-

tracking features seem sensitive to both processes, whereas

the EEG features derived from our EEG device work mainly

for the relevance decision process.

Examination of the selected best predictor features are

cursory. This is a direction for future work. Also, the Results

and Discussion sections were devoted exclusively to per-

ceived relevance. Our extended analysis, not reported here,

showed similar classification performance is possible for

document relevance. We believe perceived relevance is

more important for understanding cognitive processes at the

foundation of RJs. As a general point, to gain a deeper

understanding of relevance and its associated cognitive pro-

cesses it is best to focus on user-subjective processes and

their observable measures. NP methods, such as those

applied in our work, offer the prospect of looking “into the

user’s brain.” Progress in NP methods and results from cog-

nitive neuroscience can enrich IS&R research programs in

transformative ways through understanding the cognitive

foundations that shape user interactions with information.

This work contributes more generally to the IS&R field

by developing an objective method to investigate processes

of reading and subjective RJs in search. It addresses IS&R

foundations by exploring the empirical-grounding for a key

IS&R construct, relevance, in a neural-centered description

of cognitive processes. There is potential for practical appli-

cation of such techniques. For example, near real-time

detection of RJs within search sessions may be achievable.

This could drive system personalization, search intent detec-

tion, and relevance feedback to search algorithms.
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