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Abstract. It is of great significance to infer activation extents under
different cognitive tasks in neuroscience research as well as clinical appli-
cations. However, the EEG electrodes measure electrical potentials on
the scalp instead of directly measuring activities of brain sources. To
infer the activated cortex sources given the EEG data, many approaches
were proposed with different neurophysiological assumptions. Tradition-
ally, the EEG inverse problem was solved in an unsupervised way without
any utilization of the brain status label information. We propose that by
leveraging label information, the task related discriminative extended
source patches can be much better retrieved from strong spontaneous
background signals. In particular, to find task related source extents,
a novel supervised EEG source imaging model called Graph regularized
Variation-Based Sparse Cortical Current Density (GVB-SCCD) was pro-
posed to explicitly extract the discriminative source extents by embed-
ding the label information into the graph regularization term. The graph
regularization was derived from the constraint that requires consistency
for all the solutions on different time points within the same class. An
optimization algorithm based on the alternating direction method of mul-
tipliers (ADMM) is derived to solve the GVB-SCCD model. Numerical
results show the effectiveness of our proposed framework.

Keywords: EEG source imaging - Discriminative source - Graph
regularization + Total variation (TV) - Alternating direction method of
multiplier (ADMM)

1 Introduction

Electroencephalography (EEG) is a non-invasive brain imaging technique that
records the electric field on the scalp generated by the synchronous activation of
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neuronal populations. It has been previously estimated that if as few as one in a
thousand synapses become activated simultaneously in a region of about 40 mm?
of cortex, the generated signal can be detected and recorded by EEG electrodes
[1,2]. Compared to other functional neuroimaging techniques such as functional
magnetic resonance imaging (fMRI) and positron emission tomography (PET),
EEG is a direct measurement of real-time electrical neural activities, so EEG can
provide the answer on exactly when different brain regions are involved during
different processing [3]. PET and fMRI, by contrast, measure brain activity
indirectly through associated metabolic or cerebrovascular changes which are
slow and time-delayed [2—4].

Although EEG has the advantages of easy portability, low cost and high tem-
poral resolution, it can only measure the electrical potential from on the scalp
instead of measuring directly the neural activation on the cortex. Reconstructing
the activated brain sources from the recorded EEG data is called inverse problem
(also known as source localization). Due to its significance in clinical applica-
tions and scientific investigations on understanding how our brain is functioning
under different cognitive tasks, numerous methods have been proposed to solve
the inverse problem [5-8]. Furthermore, source localization can serve as a pre-
liminary step for brain connectivity network analysis [9,10], as the calculation
of connectivity between two brain regions is based on the measurement of how
“closely” related of the time series from those two regions, using Pearson corre-
lation, transfer entropy etc. as summarized in [11]. The next step is to analyze
the brain network using complex networks properties such as small-worldness or
clustering coefficient [12-17], as we saw a trend that more attention has been
focused on in neuroscience community from traditional “segregation” perspec-
tive to “integration” perspective where the functional and effective connectivity
are intensively studied [18] in the past decades.

It is very challenging to solve the EEG inverse problem since it is highly
ill-posed due to the fact that the number of dipoles is much larger than that of
electrodes. To seek a unique solution, regularization technique could be applied
to incorporate prior knowledge of sources. The most traditionally used priors
are based on minimum energy, resulting in the ¢> norm based minimum norm
estimate (MNE) inverse solver [19]. By replacing ¢ by ¢;, minimum current esti-
mate (MCE) [20] can overcome the disadvantage of over-estimation of active area
sizes incurred by the 5 norm. Bio-inspired algorithms such as genetic algorithm
[21], Particle Swarm Optimization (PSO) is also used in EEG source estima-
tion [22,23]. Pascual-Marqui et al. presented standardized low-resolution brain
electromagnetic tomography (sLORETA) [7] that enforces spatial smoothness
of the neighboring sources and normalizes the solution with respect to the esti-
mated noise level; Gramfort et al. proposed the Mixed Norm Estimates (MxNE)
which imposes sparsity over space and smoothness over time using the /; o-
norm regularization [24]. In [25], the same authors proposed time-frequency
mixed-norm estimate (TF-MxNE) which makes use of structured sparse priors
in time-frequency domain for better estimation of the non-stationary and tran-
sient source signal. Li et al. presented the graph Fractional-Order Total Variation
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(gFOTV) [26], which enhances the spatial smoothness of the source signal by
utilizing the sparsity of the fractional order TV defined on a triangular mesh. Liu
et al. first proposed to combine the EEG inverse problem and the classification
problem into a joint framework which is solved using a sparse dictionary learning
technique [27]. In recent years, it has been found that by imposing sparseness on
the original domain is inappropriate for the extended source estimation, source
extents can be obtained by enforcing sparseness in transformed domains with
total variation regularization [6,8,26,28], which makes more sense considering
the true sources are not distributed in an isolated and independent way.

It is worth noting that the aforementioned algorithms for solving the EEG
inverse problem used different prior assumptions of sources configurations. To
the best of our knowledge, the traditional algorithms solved the inverse problem
in an unsupervised way and did not use the brain status label information such
as happiness, sadness or calm. Due to the fact that brain spontaneous sources
contribute to the majority of EEG data, label information plays a key role to
find the discriminative task-related sources [27,29,30]. The remaining question
is why not utilizing label information to better reconstruct discriminative source
and how to use those information and fuse the label information into traditional
inverse models.

In this research, we proposed a graph regularized EEG inverse model that
uses label information to estimate source extents with sparsity constraint in the
transformed domain. The graph regularization was derived from the assumption
that requires intra-class consistency for the solutions at different time points. The
proposed graph regularized model was solved by the alternating direction method
of multipliers (ADMM). The proposed model is tested to find discriminative
source extents and its effectiveness is illustrated by numerical experiments.

2 Inverse Problem

EEG data are mostly generated by pyramidal cells in the gray matter with an
orientation perpendicular to the cortex. It is well established to assume the orien-
tation of cortex sources is perpendicular to the surface [31]. With a so-called lead
field matrix L that describes the superposition of linear mappings from the cortex
sources to the EEG recording sensors, the forward model can be described as

X =LS +¢, (1)

where X € R¥*T is the EEG data measured at N electrodes on the scalp for
T time samples and e represents the noise , each column of lead field matrix
L (Le RN*P) represents the electrical potential mapping pattern of a cortex
dipole to the EEG electrodes. D is the number of dipoles. Figure1 illustrates
the process of building a realistic brain model, the cortex sources or dipoles
are represented with triangle meshes, each triangle represents a dipole. Here
S € RPXT represents the electrical potentials in D source locations for all the T
time points that are transmitted to surface of the scalp. As L is a wide matrix
with much more columns than rows, the inverse problem of inferring S from
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X becomes ill-posed. Mathematically speaking, to seek a unique solution, a
regularization technique could be applied. An estimate of S can be calculated
by minimizing the following objective function:

argmin || X — LS||% + AR(S), (2)
S

the first term is called fidelity term measuring the fitting error and the second
term is called regularization term. Here ||-||  is the Frobenius norm which sums
up the squared values of all entries in a matrix. The regularization term R(S)
is to encourage spatially or temporally smooth source configurations and to
enforce neurophysiologically plausible solutions. For example, to restrict the total
number of total activated sources, £y norm can be ideally used as it measures
the cardinality of sources. However, the ¢p-norm regularized problem is NP-hard
from the perspective of computational complexity. Instead of fp-norm, many
convex or quasi-convex norms have been used as R(+), such as ¢;. More precisely,
source localization can be obtained by solving the following ¢ -regularized model.

. 2
argmin [lz; — Lsil|5 +7[|silly, 3)
Sq
where s; is the sparse coding for all the dipoles, i.e., the i-th column of S, and
the nonzero entry of s; represents the activated source. We want to find the best
s; to fit the observed data xz; while maintaining sparse configurations.

Fig.1. From MRI images to realistic brain model. After gathering the MRI
scans of the head, tissue segmentation is conducted followed by mesh generation. After
assigning conductivity values to different tissues and electrodes co-registered with the
meshing model, boundary element method (BEM) was used to solve the forward model.
Each triangle represents a brain source, the direction of the source is assumed to be
perpendicular to the triangular surface.

3 Graph Regularized EEG Source Imaging
in Transformed Domain

In this section, we first introduce the sparsity related regularization in the trans-
formed domain which promotes the discovery of extended source patches rather
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than isolated sources on the cortex. Our proposed graph regularized model in
the transformed domain is presented in detail.

3.1 EEG Source Imaging in Transformed Domain

As the cortex sources are discretized with meshing triangles, simply distributed
source imaging using the 1 norm on S will cause the calculated sources distrib-
uted in an isolated way instead of grouped as source extents. In order to encour-
age source extents estimation, Ding [6] proposed to used sparse constraint in the
transformed domain and the model was termed as Variation-Based Sparse Corti-
cal Current Density (VB-SCCD). In [8], Zhu et al. proposed to use multiple priors
including variation-based and wavelet-based constraints. The VB-SCCD model
can be extended by adding sparse regularization in the original source domain
named Sparse VB-SCCD (SVB-SCCD) [32]. The common yet most important
term is the TV term, which considers the total sparsity of the gradients of the
source distribution so that the spatial smoothness can be guaranteed. The total
variation was defined to be the /1 norm of the transformed domain using a linear
transform characterized with the matrix V € RP*Y whose entries are

(4)

vi; = L;v, = —1; if voxels j,k share edge ¢;
v;; = 0; otherwise.

where and N is the number of voxels, P is the number of edges from the trian-
gular grid. The motivation of the total variation regularization is illustrated in
Fig. 2, when the red triangle is estimated to be activated, the neighboring blue
voxels should also be activated.

Fig. 2. Illustration of V matrix design purpose. When one voxel (in red) is activated,
the neighbor voxels (in blue) are encouraged to be activated to achieve smaller goal
value in Eq. 5 (Color figure online)

We can see that the matrix V'S contains all differences of amplitudes of any
two adjacent voxels. Then the model for the VB-SCCD has the following form:

(5) = argmin I1X — LSII7 + AV - ()
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3.2 Discriminative Source Reconstruction with Graph
Regularization

Previous studies [18,33] indicated that the brain spontaneous sources contribute
most part of the EEG signal. The neurons in our brain are still active even the
subjects are in closed-eye resting state. As a result, the source solution given by
traditional EEG inverse algorithm is likely to be corrupted by background noise.
A simple example is that suppose ©1 = L(so + $1) and x5 = L(sp + s2), and
8o is the spontaneous common source across different classes: brain status 1 and
status 2. Here s; is the discriminative source for class 1, and s is the discrimina-
tive source for class 2. Without the label information, traditional methods such as
MNE, MCE, MxNE are trying to estimate the overall source activation pattern
instead of the task related ones. Even worse, when the magnitude of sy is much
greater than s; and sg, the traditional method will be more likely to fail.

Inspired by graph regularization in computer vision community for discover-
ing discriminators of images [34-37], the proposed model employs a Laplacian
graph regularization term in the original VB-SCCD and is termed as GVB-SCCD
in this paper. Although we can consider the graph regularized SVB-SCCD model
which involves sparsity regularization imposed on both the original source signal
domain and TV transformed domain [8], the parameter tuning process will be
very complicated since it involves three parameters that balance the trade off
between data fidelity, sparsity on original domain, sparsity on the transformed
domain, and graph regularization, and its effectiveness will be evaluated in our
future work. The graph regularization tries to eradicate the spurious sources that
are not consistent intra-class. The common source inter-class are decomposed as
the first step using Voting Orthogonal Matching Pursuit (VOMP) algorithm
proposed in [29]. The GVB-SCCD model is given below:

N
1 2 0B 2
() = arguin 3 |X = LSIZ+ 5 3 s = 3 My + AIVSI e
i,j=1
Here ||-[|; ; is the ¢; norm notation for a matrix, equal to the sum of absolute
values of all entries from a matrix. X € R¥*T the EEG data, where T is the
number of samples from different classes. The second term that penalizes the

inconsistent source solutions within the same class is the graph regularization
term. The definition of M matrix is defined as:

(7)

The goal of this formulation is to find discriminative sources by decomposing the
common source while maintaining the consistency of intra-class reconstructed
sources. By defining D as a diagonal matrix whose entries are row sums of the
symmetric matrix M, D;; =Y ; Mij and the graph Laplacian G = D — M [34],
the second term of Eq. (6) is further expanded as:

Mo — +1, if (s4,8;) belong to the same class;
Y0, if (s;,85) otherwise.

N N
Do lsi—sils My = > (si"si+ 5,75 — 267 5;) My = 2Te(SGST).  (8)

ij=1 1,5=1
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As a result, Eq. (6) is written as
1
($) = argmin 5 X = LS| + B(Te(SGST)) + AV S, 1. (9)

where the second term is called graph regularization. Using variable splitting,
Eq. (9) is equivalent to

1
min 2 X = LS|+ AV [ 1 + B(TR(SGST))
st. Y =VS. (10)

The new formulation makes the objective function separable with respect to the
variables S and Y. For Problem (10), S can also be written in a separable form
as

1 2 T T
min = ||z; — Ls;||5 + A|yill; + BGiis; si + 57 hy
i S e~ L+ Ml + 9 1 "

s.t. Yi = VSfL',

where h; = QQ(Zj# Gijs;), and x;, 8;, y; and z; are the i-th column of the
matrices X, S, Y and Z, respectively, G;; is the (¢, j)-th entry of the matrix G.

4 Optimization with ADMM Algorithm

After reformulating Problem (11) to unconstrained augmented Lagrangian func-
tion, it can be solved using ADMM ([38]:

1 2
Lp(siyyi,wi) = 5 llws = Lsillz + Alyally + BGiis] si + 5] hi (12)
p
+uf (Vi =) + 5 [Vsi = il
The variable s;, y;, u; are updated sequentially, with the hope that each subprob-

lem has a closed form solution or can be calculated efficiently. In short, ADMM
results in two sub-problems Eqgs. (13) and (14) plus a variable update Eq. (15),

1
s*) = argmin L,(s, " 4y = argmin 3 @i — Ls||3 + 8GiisTs +sTh;
p el
+ Ellvs —yiP 4 2 (13)
2 P
2
el
ygkﬂ) := argmin Lp(s§k+1),y, uz(-k)) = argmin A||y||, + g VSZ(-kH) -y+ ’7
Y y
2

(14)
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I O R K G (15)

7

The update of sgk“) has a closed form solution, which is

u

s = pUL gy — by + pV T (g — 2], (16)

p

where P = LTL + 238G I + pVTV. The update of yi(kﬂ) involves the proximal
operator of the /{-norm, and its update can be expressed as:

(k+1)
y£k+1) = shrink(Vsl(-k+1) + UiTa %)7 (17)

where the shrinkage function is defined as

shrink(v, i) = (Jv] = p) | sgn (v). (18)

Here (x)4 is « when x > 0, otherwise 0, and sgn(v) is the sign of v. The shrink-
age function provides an efficient way to solve the ¢;-regularized minimization
problem due to its calculation is element-wise.

The procedure for solving problem (10) is summarized in Algorithm 1.
Although it is time-consuming to update all s;’s, the separability of s;’s sug-
gests further improvement with the help of parallel computing techniques.

Algorithm 1. ADMM framework for solving goal function (10)
INPUT: Lead field matrix L, EEG signal matrix X, Laplacian Graph G, total varia-
tion matrix V, parameter a and 3, A
OUTPUT: Source matrix S
while the stopping criteria is not met
fori=1,...,N
Alternating update until converge:

()

s = PTUL @i — i+ pVT (" = )],

WD
Y = shrink (Vs 4 2,
D ) (D o)
end for
end while

5 Numerical Experiment

A realistic head model called “New York Head” [39] and synthetic data with
known ground truth is used for validation of our method. The dimension of
lead field matrix is 108 by 2004 for the head model. We sampled 1s of the
data with 200 Hz frequency for each class of brain status. The number of classes
is fixed to be 3. An extended common source patch for all 3 classes with 4,
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6, 8 neighboring sources are assumed to be activated respectively. The task
related discriminative source extents for each class also have the same number of
neighboring sources activated. The magnitude of common source that represents
spontaneous activation pattern is set as 0.8 with a standard derivation of 0.1 and
the discriminative source is assigned to be 0.2 with a standard derivation to be
0.05. To mimic the noise from other source locations, we set the magnitude of
10 spurious sources as 0.35 or 0.5 in the simulation experiments. The spurious
sources are randomly chosen in each time point but not consistent intra-class.
Under the current experiment settings, the actual activated number of source
can be 18, 22 and 26. According to the result in [40], the recovery rate drops
quickly when the number of dipoles increases. When the number of activated
sources is 20, the recovery rate is about 40% since the lead field matrix has a
very high coherence across columns. The parameters A and § in Eq. (9) is set be
0.1 and 1 respectively. Each configuration was repeated 5 times and the ground
truth source localization is randomly simulated in 8 different Regions of Interest
(ROI) defined in [41]. The initialization of S in ADMM algorithm was done by
solving the ¢; constrained problem using Homotopy Algorithm.

The accuracy is based on the shortest path distance (in mm) from the ground
truth location to the reconstructed source location along the cortex surface. The
final results under different simulation settings are summarized in Tablel. In
Table 1, PAcc represents the primary common source location accuracy (in mm),
and DAcc represents the discriminative source location accuracy averaged from
3 classes. The simulation result illustrated our proposed method can perform
better than all benchmark methods for discriminative source under different
configurations, and also performs well for the primary common source. Moreover,
from the comparison of the benchmark methods, the ¢; based methods within
MCE framework is better than the ¢ based methods such as SLORETA and
MNE. The /5 based methods give an overestimation of sources and ignore the
task related discriminative sources. The ¢; constrained MCE can recover both
the primary source well, however, the discriminative source extent is corrupted
by spurious sources. Our method can provide a sparse and precise reconstruction

Table 1. Accuracy summary

SSM Patch size = 4 Patch size = 6 Patch size = 8

0.35 0.5 0.35 0.5 0.35 0.5
Method PAcc|DAcc |PAcc [DAcc |PAcc|DAcc |[PAcc/ DAcc |[PAcc|DAcc |[PAcc|DAcc
Homotopy [4.76 [33.32 |6.97 |46.56 |4.25 (22.43 |14.69/47.45 |5.08 |22.72 |12.55/30.48

DALM 4.75 |34.04 |7.94 |46.98 |4.08 |22.67 |15.03|46.85 |4.65 |22.58 |12.93|30.97
FISTA 5.63 [39.04 |5.78 |58.25 [6.20 |34.08 |13.66/49.56 |8.84 |43.16 |8.09 33.84
sLoreta 9.75 160.33|14.44 |154.7 |5.07 |179.31/13.98/133.15/5.99 |166.53|11.26|152.43
MNE 9.51 |140.73|22.16 |136.33/6.06 |161.86/26.28/90.32 |7.69 |151.67|22.31|126.56

GVB-SCCD|2.26 |7.85 |3.88 |3.46 |3.69 8.99 |7.92 13.67 |4.81 |9.05 |10.24|12.18
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discriminative source 1

common source

0.8

0.6

0.4

0.2

discriminative source 3

Fig. 3. Ground truth for all 3 classes aggregated in one figure with a common source
and 3 discriminative sources

Fig. 4. Illustration of primary source reconstruction and discriminative source recon-
struction by difference methods. The first row is source solution provided by MNE,
the second row is from the solution of SLORETA, the third and fourth row are DALM
and FISTA method within the MCE framework, the last row is our proposed method
GVB-SCCD.
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of both primary source and discriminative source. For illustration, the ground
truth source and reconstructed source from different algorithms are given in Figs.
3 and 4 respectively. Those illustration results are from the case when spurious
source magnitude (SSM) is equal to 0.5 and the patch size is equal to 6. The
brain imaging figures in Fig. 4 also show that the /5 based methods gave a diffuse
solution and failed to recover the discriminative sources. Our proposed method
can recover the primary source as well as discriminative source by encouraging
intra-class consistency imposed by graph regularization.

6 Conclusion

The EEG inverse problem is usually solved independently under different brain
states. In this research, we used label information to find discriminative source
patches by fusing it into a graph regularization term. The proposed model called
GVB-SCCD has the advantage to better find the task related activation pat-
tern than traditional methods. The additional graph regularization can promote
intra-class consistency thus eliminate the spurious sources. The proposed ADMM
algorithm is given to solve the GVB-SCCD model with better performance than
the benchmark methods validated in the numerical experiments. One of the
drawbacks for the proposed framework is the TV term only allow smoothness
for the first spatial derivative, future work will consider a smoother higher-order
TV to enhance smoothness of reconstructed sources.
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