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Abstract—The sudden and spontaneous occurrence of
epileptic seizures can impose a significant burden on pa-
tients with epilepsy. If seizure onset can be prospectively
predicted, it could greatly improve the life of patients with
epilepsy and also open new therapeutic avenues for epilepsy
treatment. However, discovering effective predictive patterns
from massive brainwave signals is still a challenging problem.
The prediction of epileptic seizures is still in its early stage.
Most existing studies actually investigated the predictability of
seizures offline instead of a truly prospective online prediction,
and also the high inter-individual variability was not fully
considered in prediction. In this study, we propose a novel
adaptive pattern learning framework with a new online
feature extraction approach to achieve personalized online
prospective seizure prediction. In particular, a two-level online
feature extraction approach is applied to monitor intracra-
nial electroencephalogram (EEG) signals and construct a
pattern library incrementally. Three prediction rules were
developed and evaluated based on the continuously-updated
patient-specific pattern library for each patient, including
the adaptive probabilistic prediction (APP), adaptive linear-
discriminant-analysis-based prediction (ALP), and adaptive
Naive Bayes-based prediction (ANBP). The proposed online
pattern learning and prediction system achieved impressive
prediction results for 10 patients with epilepsy using long-
term EEG recordings. The best testing prediction accuracy
averaged over the 10 patients were 79%, 78%, and 82% for
the APP, ALP, and ANBP prediction scheme, respectively.
The experimental results confirmed that the proposed adaptive
prediction framework offers a promising practical tool to solve
the challenging seizure prediction problem.

Index Terms—time series pattern recognition, online pre-
diction, seizure prediction, adaptive learning, probabilistic
decision making

I. INTRODUCTION

Epilepsy is one of the most common neurological disor-
ders, affecting approximately 1% of the world’s population
[4]. Epileptic seizures generally occur without warning,
and the shift between a normal brain state and seizures is
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often considered an unpredictable phenomenon. The unpre-
dictability of seizures represents a significant source of mor-
bidity in patients with epilepsy. These patients frequently
suffer from seizure-related injuries due to a loss of motor
control, a loss of consciousness or a delayed reactivity
during seizures [17]. The ability to predict the occurrence
of impending seizures could significantly improve the life
quality and treatment of patients with epilepsy.

A recent comprehensive review of seizure predictability
and seizure prediction can be found in [12]. The pio-
neering efforts to investigate the predictability of seizures
were made by Viglione and Walsh in the 1970s [28] and
Iasemidis et al. in the 1980s [8]. In particular, Iasemidis
et al. [9] noted pre-seizure changes based on analysis of
entrainment of brain dynamics. Since then, several studies
on seizure predictability have been undertaken utilizing the
abundance of computer power and advanced mathematical
techniques for biological signals. Lehnertz and Elger [13]
showed that the correlation dimension decreases prior to
seizures. Le van Quyen et al. [21] reported a reduction in
the dynamical similarity index before seizure occurrence.
Mormann et al. [15] observed that there was a relative
decrease of signal power in the delta band of the EEG
up to hours prior to seizure onsets. They also demonstrated
statistically significant discrimination between pre-seizure
and normal brain states.

Although efforts have been made to investigate the pre-
dictability of seizures, only a few investigations have been
performed on seizure prediction (prospective analysis).
Seizure prediction, what is needed in medical applications,
is different from and more difficult to achieve than seizure
predictability analysis, as we have argued and shown in
the past. One common measure for seizure prediction is
sensitivity, which is defined as the number of correct
predicted seizures divided by the total number of seizures.
A seizure is considered to be correctly predicted if there is
at least one warning within its preceding horizon. Another
measure is specificity, i.e. false prediction rate, which is
defined by the number of false predictions per hour (or
unit time). The two measures are widely adopted in more
recent studies of seizure prediction.

A more recent investigation in seizure prediction was
performed by Schulze-Bonhage’s group, a group that in
the past was very skeptical with respect to feasibility of
seizure prediction schemes [5]. These investigators reported
a maximum mean sensitivity of 43.2%, at a false seizure
prediction rate of 0.15 per hour. Training on each patient’s
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EEG data was required before a prospective run of the
algorithm on a patient. The interval at which a seizure
was predicted ahead of time was not clearly reported
but appeared to be in the range of 10 to 60 minutes.
Although this performance is sensitivity-wise almost half
of what we have reported in the past, even with our
first-generation seizure prediction algorithms [10], it is an
additional piece of independent evidence that seizures not
only can be predictable (retrospective analysis) but also
predicted (prospective analysis) too. Most recently, two
other groups have attempted prospective seizure prediction
using pattern recognition methodologies [2], [16]. A train-
ing stage per patient was required here too. The reported
specificity values varied widely per patient while sensitiv-
ity to seizures was very high and appeared encouraging.
However, in a closer inspection, both groups used the old
Freiburg database [25] that is, a database with fragmented,
discontinuous EEG data (one 24 hour interictal period well
separated from about 50 min preictal periods for a couple
of seizures per patient). Even though this is an intermediate
step towards seizure prediction, it may give a false picture
of the capabilities of a seizure prediction algorithm, which
has to work not only in real time but on line on continuous
EEG data. This fact is shown by Freiburg group’s recent
publication [5] and the poor results they obtained about
sensitivity using a fair specificity value when they decided
to run their algorithms on long-term continuous EEG data.

In general, most of the current seizure prediction methods
involve two steps. First, univariate or multivariate EEG
features are extracted from an EEG epoch within a moving
window over the entire EEG recording. Then each EEG
epoch is classified as either pre-seizure or normal based
on an optimized threshold level. Whenever a monitored
EEG epoch is classified as pre-seizure, a warning alarm is
triggered to indicate that an impending seizure is eminent
within a pre-defined prediction horizon. Although some
methods have shown good results for selected patients, the
reliability and repeatability of the results have been ques-
tioned when tested on other EEG datasets. For example,
many of the earlier optimistic findings were irreproducible
or achieved poor performance in extended EEG datasets
[1]. Several aspects of EEG-based seizure prediction are
challenging:

• Massive Multichannel EEG data. Many sensors are
necessary to monitor the brain activity for long peri-
ods. Moreover, continuous EEG data are needed, with
sampling rates up to the KHz range. Understanding
and decoding multichannel EEG time series, tempo-
rally and spatially, is an open research area.

• Variability in pre-seizure patterns. Unlike many bio-
logical detection problems with relatively clear pat-
terns to recognize, the pre-seizure EEG patterns are
unknown. Given the heterogeneity of epileptogenic re-
gions of the brain, and intracranial electrode placement
that is individualized per patient, pre-seizure EEG
patterns may vary dramatically across patients.

• High intra-individual variability of epileptic seizures

with time [10]. Pre-seizure EEG patterns may vary a
lot over time even in the same patient.

• Uncertainty in definition of a prediction horizon. For
evaluation of any seizure prediction algorithm, a pre-
diction horizon has to be defined. It provides the time
period within which a next seizure may occur upon
issue of a warning. Ideally, prediction horizon should
be equal to the pre-seizure period. However, the length
of pre-seizure period is a priori unknown and is likely
variable from one patient to another.

A. Related Work In Adaptive Seizure Prediction

Most current seizure prediction methods are nonadaptive
threshold-based approaches. The great inter- and intra-
individual variability of epileptic seizures makes it difficult
to develop a universal nonadaptive predictor. Manually
tuning a threshold level for each individual patient is a
subjective procedure and would pose a significant burden
on physicians and patients. The inability to benefit a wide
spectrum of patients represents a great limitation to current
seizure prediction methods. Therefore, there is an urgent
need for an automated adaptive framework for epileptic
seizure prediction.

Iasemidis et al. [10], [11] and Sackellares et al. [24]
developed optimization-based prediction algorithms which,
based on dynamical synchronization in the human epileptic
brain over time, adaptively selected groups of critical EEG
electrode sites to predict impending seizures. Adaptively
selecting only EEG channels limited the prediction perfor-
mance. More recently, Iasemidis’ group published similar
results, with high sensitivity (85.9%) and specificity (0.18
false positive rate (FPR) per hour), and long warning times
prior to seizures (67.6 minutes on average), on prospective
seizure prediction in rodents with chronic epilepsy [7].
Rajdev et al. [22] proposed an adaptive seizure prediction
algorithm based on linear autoregressive (AR) modeling of
intracranial EEG recorded from 4 kainate-treated epileptic
rats. Warnings were issued when prediction errors of the
model over time exceeded an adaptive threshold. Even
though sensitivity to seizures was high, specificity was
very low (the online real-time algorithm exhibited 0.08
false warnings per minute, or equivalently 4.8 warnings per
hour). In addition, seizures were predicted on the average
of only a few seconds prior to seizure onset, which is
within the range of seizure ‘detection’ rather than seizure
‘prediction’ (e.g. seizures may start in deep brain structures
seconds before they manifest themselves on the surface of
the brain).

Thus, current adaptive seizure prediction approaches are
generally based on an adaptively-optimized set of EEG
channels [10], [11], [24] or an adaptive threshold [22].
In principle, these approaches employed the prediction
settings optimized from one or several occurred seizures in
the past to predict the next seizure. An intrinsic assumption
is that the next seizure is similar to the most recent ones.
However, this is not always true in reality. Therefore, it is
desirable to develop a prediction system that is capable of
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accumulating knowledge of predictive EEG patterns over
time instead of holding only ‘short memories’ from the
past.

B. Personalized Seizure Prediction

Given our experience with seizure prediction, we conjec-
ture that a promising approach should possess intelligent
learning ability and autonomously adapt to individual pa-
tient’s EEG patterns. In this study, we make an important
progress towards this direction and formulate the seizure
prediction problem as an online adaptive pattern recognition
and learning problem. In particular, we provide a new
online feature extraction and prediction methodology for
nonstationary multivariate time series data, and apply it to
construct an adaptive framework for online monitoring and
prediction of seizure onset. The proposed online learning
and prediction framework combines probabilistic theory,
adaptive learning theory and new feature extraction tech-
niques to solve the challenging online seizure prediction
problem. It can efficiently process massive non-stationary
EEG data, and summarize millions of complex time series
patterns in a concise feature space at a very low compu-
tational cost. We show that, with adaptive pattern learning
capabilities, the proposed online prediction framework has
a great potential to realize accurate personalized seizure
prediction for each individual patient.

The rest of the paper is organized as follows. In section
II, the online monitoring and prediction approaches are
presented, including feature extraction, feature selection,
three adaptive prediction schemes, and the evaluation met-
rics of prediction performance. The experimental results are
presented in Section III, and the conclusions of the study
is in Section IV.

II. MATERIALS AND METHODS

A. Data Collection

We used a dataset containing long-term continuous in-
tracranial EEG recordings from ten epileptic patients. The
EEG was recorded with a standard 26 electrode montage
(see electrode placement in Figure 1). Recording durations
ranged from 3 to 13 days per patient. Expert epileptologists
annotated the EEG recordings of the patients to determine
the number of seizures, their onset and offset points. The
characteristics of the ten patients and the EEG data statistics
are outlined in Table I.

B. Online Learning and Prediction Framework

In this study, we employ an adaptive online learning
and prediction framework to discover hidden predictive
patterns for epileptic seizures. The flowchart of the online
prediction scheme is shown in Figure 2. The proposed
online prediction framework has the following significant
components:

• employed a deterministic chaotic measure Lyapunov
exponent to achieve dimensionally reduction.

Subdural electrode strips are

placed over:

left orbitofrontal cortex (LOF)

right orbitofrontal cortex (ROF)

left subtemporal cortex (LST)

right subtemporal cortex (RST)

Depth electrodes are placed in:

left hippocampus (LTD)

right hippocampus (RTD)

Fig. 1: The interior transverse view of the brain [18] and
the placement of the 26 EEG electrodes.

• developed a two-level time series monitoring and fea-
ture extraction framework to characterize multivariate
EEG patterns.

• constructed an efficient online pattern library by in-
troducing pattern clusters of original feature vectors
in discrete feature space.

• proposed an adaptive probabilistic online prediction
rule using the pattern occurrence time and frequency
information in pre-seizure and normal periods stored
in the pattern library. Two other prediction rules were
also experimented and compared using a popular
binary classification technique and Naive Bayesian
theory.

These key components of the online monitoring and pre-
diction framework are discussed in detail in the following
subsections.

C. Two-Level Feature Extraction

As shown in Figure 2, we employ a two-level sliding
window approach to monitor and extract features from mul-
tichannel EEG signals. The First-Level Feature Extraction:
is performed on raw EEG signals directly. Since EEG sig-
nals are highly nonstationary and seemingly chaotic, there
has been an increasing interest in analyzing EEG signals in
the context of chaos theory [23]. Several commonly used
chaotic measures include largest Lyapunov exponent [10],
correlation dimension [26], Hurst exponent [3] and entropy
[20]. Among these measures, the Lyapunov exponent has
been shown to be useful in characterizing the stability of
the brain [27]. We have developed an estimation algorithm
called the short-term largest Lyapunov exponent (STLmax)
to quantify EEG dynamics [8], [10]. We also employed this
measure in the current study. For each channel of EEG time
series, we convert each 10-second non-overlapping EEG
signal into one STLmax number. For a raw EEG epoch
with 26 channels, 29 first-level features are extracted in the
first-level sliding window. The averaged STLmax values
of each channel contributed 26 univariate features. And we
also extracted three bivariate features: averaged pairwise
Euclidean distance, T-statistic, and Pearson correlation over
all pairs of channels. The second-level feature extraction is
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TABLE I: The characteristics of the ten patients and the EEG data statistics

Patient Gender Age (years) EEG Duration (days) Number of Seizures Seizure Rate (per hour) Seizure Type Onset Region
1 F 45 3.55 7 0.082 CP, SC RH
2 M 60 11.98 7 0.024 CP, GTC, SC RH, RF
3 F 41 8.55 22 0.104 CP RH
4 M 19 13.13 17 0.054 CP, SC RH
5 M 33 12.24 18 0.061 CP, SC RH
6 M 38 3.18 9 0.118 CP, SC RH
7 M 44 6.09 23 0.157 CP, SC LH, RH
8 M 29 6.07 19 0.130 CP, SC RH
9 F 37 11.53 20 0.061 CP, SC LH, RH
10 M 37 9.88 12 0.051 CP, GTC LH, RH

total - - 86.20 154 - - -

Onset region: LH, left hippacampal; RH, right hippacampal. Seizure types: CP, complex partial; SC, subclinical; GTC, generalized tonic/clonic.

A Sliding Window Monitors the STLmax Time Series and Extract the First-Level Features

A Second-level sliding window is used to

monitor time series of the first-level features

& extract second-level features

F1 F2 ... ... Fn-1 Fn

 Feature Vector of the Window Epoch

Store the Feature Vector into the Pattern Library. Its
prediction score is updated after each seizure onset.

F1 F2 ... ... Fn-1 Fn Pattern Info.*

: : :: : ::

Seizure Prediction Rule Construction
(Preseizure Pattern Identification)

APP: Adaptive Probabilistic Prediction Scheme Using
Prediction Score and Pattern Cluster.

ALP: Adaptive Linear Classification-based Prediction
Scheme using Linear discriminant analysis (LDA).

Online Updating: After each seizure onset, the score
threshold, the LDA classification hyperplane, and the

Bayesian Inference Rule are Re-trained & Updated.

Online Prediction (Prospectively)

APP: If the prediction score of the associated pattern
cluster in the pattern library is higher than a predefined
threshold, trigger a seizure warning. Otherwise, no warning.

ALP:  A linear hyperlane is constructed to classify the
monitored feature vector. If the feature vector is classified
as pre-event, trigger a seizure warning. Otherwise, no
warning.

*Pattern information includes pattern location information

(preseizure or interictal), and the occurrence frequencies

in the preseizure and interictal periods.

ANBP: Adaptive Naive-Bayes-Based Prediction Scheme
Using Naive Bayes Prediction Rule.

ANBP: Using the posterior probabilties for normal and
preseizure class. If the posterior probabilty of pre-seizure
is higher than that of normal class, trigger a seizure
warning. Otherwise, no warning.

Fig. 2: Flowchart of the online learning and prediction framework for personalized seizure prediction.

to monitor and characterize the temporal evolutions of the
first-level features.

The Second-Level Feature Extraction: given a time series
of a first-level feature, we first applied a piecewise linear
approximation algorithm to partition the time series into
piecewise linear segments using its key-turning points. We
have developed a reliable and efficient algorithm for piece-
wise linear segmentation of time series data, called two-

stage-top-down (TSTD) approach. A more detailed discus-
sion of this algorithm can be found in [29]. After piecewise
linear segmentation of a time series X = (x1, x2, ..., xn),
its key-turning points become prominent (shown with black
dots in Figure 3). There are six linear segments to describe
the original time series. Three segments (a, c, e) have
increasing trends, and the other three segments (b, d,
f) have decreasing trends. Then, the extracted increasing
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and decreasing trends characterize the temporal fluctuation
pattern in a time series. The following four second-level
features are proposed to capture the temporal fluctuation of
first-level feature time series.

• Feature 1: accumulated vertical decrease in the seg-
mented piecewise linear time series, which is calcu-
lated as

F1 = H(a) +H(c) +H(e), (1)

where the function H(.) means the vertical distance
from the starting point to the ending point of a sub-
segment in the segmented time series.

• Feature 2: accumulated vertical increase in the seg-
mented piecewise linear time series, which is calcu-
lated as

F2 = H(b) +H(d) +H(f), (2)

• Feature 3: percentage of the decreasing sub-segments
in the time series, which is calculated as

F3 = T (a+ c+ e)/T (X), (3)

where T (.) is the horizontal distance from the starting
point to the ending point of a sub-segment.

• Feature 4: range of the time series, which is calculated
as

F4 = max(X)−min(X), (4)

where max(X) and min(X) means the maximum and
minimum values of the time series, respectively.

a
b

c
d

e

f

Piecewise Linear Segmentation

of the Time Series X

 Four key features:

 1: Accumulated vertical increase

 2: Accumulated vertical decrease

 3: Percentage of decline periods

 4: Range: max(X)-min(X)

Fig. 3: Four skeleton-point-based features are employed to
represent the temporal fluctuation of a time series.
D. Feature Selection

For each EEG epoch monitored online, we have 29 first-
level features, and each first-level feature has 4 second-
level features to describe temporal variations of the first-
level features. Thus, each multivariate EEG epoch has
29 × 4 = 116 features after the second-level feature
extraction. Since not all of these features are informative to
seizures and also to achieve dimensionality reduction, we
employed the Pudil’s floating search [19] to select which
temporal features of which first-level features have the
discrimination power to separate pre-seizure from normal
epochs. Pudil’s floating search provides the possibility of
trading significant reduction of search time for often negli-
gible decrease of the classification accuracy. The criterion
for feature selection was the nearest-neighbor leave-one-
out classification performance. The selected optimal feature
subset has the highest leave-one-out classification accuracy.
In our experiment, we selected eight most important fea-
tures from the 106 candidates from training dataset for
online pattern monitoring and prediction.

E. Pattern Library Construction in Discrete Space

The two-level sliding window monitors EEG signals
and convert EEG epoch at each step of sliding window
into a 8-dimensional feature vector. A pattern library was
constructed by storing each 8-dimensional feature vector at
each step of sliding window. Instead of using raw feature
vector, we represent each pattern vector in a pattern cluster
formulation in discrete feature space. Pattern Cluster In
Discrete Feature Space: we partitioned each feature space
into a number of non-overlap intervals. Feature vectors
that fall into the same feature bins are considered as
similar feature patterns and form a pattern cluster. Using
the concept of pattern cluster, one can represent millions or
billions of feature vectors by a largely reduced number of
pattern clusters. As shown in Figure 4, we partitioned each
feature space into nonoverlapping intervals, two similar
pattern vectors can be associated to and represented by
the same pattern cluster in the discrete feature space.
The pattern cluster representation achieves dimensionality
reduction and allows a very efficient storage, visualization,
and computational analysis. More importantly, it enable us
to perform probabilistic analysis to pattern clusters.

Each feature space is discretized into 5

bins.  The above two feature vectors fall

into the same pattern cluster: 2325.

1

2

3

4

5

Bin #

F1                 F2                     F3                    F4

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

Four-Dimension Feature Space

Fig. 4: Demonstration of the pattern cluster concept. The
two similar feature vectors can be associated to and repre-
sented by the same pattern cluster.

F. Adaptive Probabilistic Prediction Scheme

In the probabilistic prediction scheme, each feature vec-
tor is represented by its corresponding pattern cluster in
discrete feature space and stored into the pattern library.
In addition, as shown in Figure 2, the pattern occurrence
frequency and occurrence time related to seizure onset is
also stored in the pattern library. Using these information,
we propose an adaptive probabilistic prediction framework
to discover hidden predictive pattern clusters to seizure
onset.

Prediction Score of A Pattern Cluster: given a pattern
cluster, indexed as the kth cluster in the pattern library, its
prediction score Sk is defined as follows:

Sk =
Npre/Ntot

Rpre
×
Ndist

pre

Nevt
, (5)
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where Npre is the number of occurrences of the pattern
cluster in all monitored pre-seizure periods; and Ndist

pre is
the number of pre-seizure periods in which the pattern
cluster appears at least once; Ntot is the total number of
occurrences of the pattern cluster; and Nevt is the total
number of seizures that have occurred. For example, if two
seizures occurred, and a pattern cluster occurred three times
in the first pre-seizure period, and twice in the normal
periods, but did not show up in the second pre-seizure
period, then Npre = 3, Ndist

pre = 1, Ntot = 5, and Nevt = 2.
Finally, Rpre is the ratio of pre-seizure periods over normal
periods defined as follows:

Rpre =
Tpre

Ttot − Tpre
=

Nevt × Thrzn
Ttot −Nevt × Thrzn

, (6)

where Tpre is the total length of monitored pre-seizure
periods, Ttot is the total length of monitored EEG time
series, and Thrzn is the length of prediction horizon.

The predictive score proposed in formula 5 indicates how
strong a pattern cluster is associated with seizure onset. In
particular, the first term of formula 5 is to evaluate if the
pattern cluster occurs in pre-seizure periods at a random
level. If the pattern is pure random in both pre-seizure and
normal periods, then we have E(Npre/Ntot) = E(Rpre).
If the pattern occurs more frequently in pre-seizure peri-
ods than the normal periods, we have E(Npre/Ntot) >
E(Rpre). The higher the ratio value, the more likely the
pattern cluster is associated with seizure onset. If the
pattern occurs less frequently in pre-seizure periods than
the normal periods, we have E(Npre/Ntot) < E(Rpre).
The second term of formula 5 is to evaluate if a pattern
cluster occurs in many pre-seizure periods. We expect that
an ideal candidate of predictive pattern should appear in
most pre-seizure periods, not only in a few ones. That is
Ndist

pre /Nevt ≈ 1.
Formula 5 estimates the likelihood of a pattern cluster

to appear in pre-seizure periods. The higher the prediction
score, the higher probability the pattern cluster appears in
pre-seizure periods, and thus the more probable it is to
predict seizures.

Prediction Score-Based Prediction Rule: the pattern li-
brary continuously collects pattern clusters online and up-
dates their prediction scores according to formula 5. An
adaptive threshold strategy is proposed to discriminate pre-
seizure and normal pattern clusters online. We introduced
a score threshold S∗ which is defined as the value that
retrospectively maximizes the prediction accuracy in the
monitored historical time series. The threshold S∗ is up-
dated after each occurrence of a seizure. Thus we call
this prediction scheme as adaptive probabilistic prediction
(APP) defined by:

prediction =

{
preseizure, if Sk ≥ S∗,
normal, otherwise.

G. Prediction Rule Construction in Continuous Space

In addition to the probabilistic prediction rule in discrete
feature space, we also constructed and tested two prediction

rules based on the pattern library using original feature
vectors in continuous feature space. In this case, if a pattern
appears in pre-seizure periods, it is labeled as a pre-seizure
pattern; if it is in normal periods, it is labeled as a normal
pattern. To discriminate pre-seizure patterns and normal
patterns, we employed two popular classification techniques
including the Fisher’s Linear Discriminant Analysis (LDA)
and the Bayesian decision-making theory. The two predic-
tion schemes will be presented in the following.

1) Binary Classification Based Prediction Scheme: For
a pattern library with labeled feature vectors, we employed
a popular binary classification technique LDA to construct
a hyperplane to discriminate pre-seizure and normal pat-
terns. Fisher’s LDA aims to find an optimal projection
by minimizing the intraclass variance and maximizing
the distance between the two classes simultaneously [6].
Mathematically, the optimal projection ω∗ ∈ Rn×1 can be
obtained by solving the following optimization problem:

ω∗ = argmaxω
ωTSbω

ωTSωω
, (7)

where ω is the direction of the hyperplane that is used
to eparate the two data sets. Sb and Sω are the interclass
and intraclass covariance matrices, respectively. Once ω∗

is obtained, the optimal decision boundary of LDA can be
represented by ω∗TY + b = 0. The bias term b is defined
by b = −ω∗T (m1 +m2)/2.

LDA-based Online Prediction Rule: an optimal LDA
hyperplane was trained by the pattern library with feature
vectors of preseizure and normal. If monitored feature
vector is Xk, then the LDA-based prediction rule is defined
by:

prediction =

{
preseizure, if ω∗TXk + b > 0,
normal, if ω∗TXk + b ≤ 0.

The LDA hyperplane is re-trained after each seizure onset
using the latest updated pattern library. We call this predic-
tion scheme an adaptive LDA-based prediction (ALP).

2) Naive Bayesian Based Prediction Scheme: Bayesian
decision theory is one of the most widely used statistical
approaches in many data mining problems. Naive Bayesian
rule provides us with another tool to explore the pattern
library. For any monitored feature vector Xk, we have
two classes normal and pre-seizure, denoted as C1 and C2

respectively. By Bayes theorem, the posterior probabilities
for the two classes are calculated by

P (Ci‖Xk) =
P (Xk‖Ci)P (Ci)

P (Xk)
, i = 1, 2 (8)

where P (Ci) is called prior probability of class Ci, which
can be estimated by the portion of feature vectors that
are labeled as Ci in the pattern library, P (Xk‖Ci) is the
likelihood probability that the feature vector Xk belongs to
class Ci, P (Xk) is the probability of witnessing Xk overall
regardless of its class, and P (Ci‖Xk) is the posterior
probability that Xk belongs to Ci when Xk is observed. A
Bayesian prediction rule can be constructed determining the
pattern class by maximizing the posterior probability. As it
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is computationally expensive to compute the conditional
probability for a multivariate feature vector Xk, Naive
Bayes rule assumes that each features are independent. With
the independence assumption, the conditional distribution
over the class variable Ci is then expressed as follows:

P (Ci‖Xk = (F1, . . . , Fn, )) =
1

Z
P (Ci)

n∏
k=1

P (Fj‖Ci)

(9)
where i = 1, 2 and j = 1, . . . , n, representing two classes
and n feature dimensions; Z = P (Xk) is a constant for
all classes, and it is a scaling factor only dependent on
feature vector Xk. One can easily estimate the independent
probability distributions P (Fj‖Ci), j = 1, . . . , n from the
training data set (pattern library). In this study, each feature
was assumed to follow Gaussian distribution.

Naive-Bayes-Based Prediction Rule: for each monitored
feature vector Xk, P (Ci)P (Xk‖Ci) is evaluated for both
classes: pre-seizure C1 and normal C2. The Naive-Bayes-
based prediction rule is then defined by:

prediction =

{
preseizure, if P (C1‖Xk) > P (C2‖Xk),
normal, if P (C1‖Xk) ≤ P (C2‖Xk).

The Bayesian decision rule is re-trained after each seizure
onset using the latest updated pattern library. We name
this prediction scheme by adaptive Naive Bayesian-based
prediction (ANBP).

H. Seizure Detection

The proposed adaptive prediction approaches have to
work with a seizure detection algorithm for real-time de-
tection of seizure onset and subsequent characterization
of a period in the EEG as pre-seizure or normal. There
have been a number of automated online seizure detection
algorithms embedded in clinical EEG systems and our
proposed prediction approaches can be readily integrated
with them. Seizure detection was beyond the scope of this
paper; all herein reported results were produced assuming
an ideal seizure detection algorithm that runs in parallel
with our seizure prediction algorithms and gives its input
to the seizure prediction algorithms reliably and without
delay upon a seizure occurrence.

I. Evaluation of Prediction Performance

To evaluate our prediction model and enable comparison
with other models, we employed the measure specificity
and sensitivity. We defined sensitivity as the number of
correctly predicted seizures divided by the total number
of seizures, denoted as senblk in this study. For prediction
specificity, most current studies calculated a false prediction
rate, which is defined by the number of false predictions
per hour (or unit time). However, false prediction rate
does not provide enough information to infer the effect
of prediction horizon on the prediction performance. For
example, a patient has to wait until the end of prediction
horizon to determine if a warning is false. Given the same
false prediction rate, an algorithm with a 5-hour prediction

horizon will give a patient a much longer false awaiting
time than the one with a 10-minute prediction horizon. Also
the sensitivity of using a 5-hour prediction horizon is poten-
tially much higher than that of using a 10-minute prediction
horizon. This creates great confusion when evaluating the
true prediction performance of a prediction system in real
life. To overcome this issue, Mormann et al. [14] suggested
to measure prediction specificity by the portion of time
during the normal period that is not in false awaiting time.
We herein employed this time-based specificity measure,
denoted as speblk. The senblk and speblk estimation is
schematically shown in Figure 5. To evaluate the overall
performance by a single metric, we also define the overall
prediction accuracy (PA) as the mean of senblk and speblk,
that is PA = (senblk + speblk)/2.

��

��

��

��

H

Seizure

 Onset

senblk = 1/1 = 100% (There is at least one warning within

the prediction horizon.)

False Seizure Awaiting Time Block

�

Pre-seizure Time Block

Pre-seizure Time Block (length

=prediction horizonH)

If the time length of the falsely seizure awaiting periods = 2 xH = 6

hours,  the time length of the normal period = 15 hours, then

��

��

�

�

Seizure

 Onset

Normal Period

Post-seizure

    Period

Time

D
is

ta
n

c
e

 R
a

ti
o



Threshold

�

�Post-seizure Period

False Alarms

�

false seizure awaiting periods

Predictive Feature
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H H

True Alarms

speblk=  1- 6/15 = 60% (The portion of the normal period

during which the patient does not falsely await a seizure.)

Fig. 5: A demonstration of the time block based sensitivity
(senblk), specificity (speblk), false alarms, and false seizure
awaiting periods in a generic seizure prediction procedure.
The black dot line indicates critical predictive features. If it
drops below the threshold, a prediction alarm is generated.

J. Training and Testing

For each patient, the EEG recordings were divided into
training and testing datasets. The training datasets were the
EEG recordings that contained the first half of seizures. It
is used to select the most discriminative features of pre-
seizure and normal patterns and obtain the best parame-
ter settings of the prediction system, including prediction
horizon (H), sliding window size (Lmw), and moving-step
length (Lstep). For each patient, the prediction framework
prospectively with best parameter settings trained from
the training dataset was evaluated by the testing EEG
recordings that contained the second half of seizures of the
patient. The pattern library and the prediction rules were
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adaptively updated during the monitoring process of the
testing EEG recordings.

III. RESULTS

A. Computational Settings

The proposed online monitoring and prediction frame-
work with three prediction rules was tested on EEG record-
ings from 10 patients with epilepsy. The complete param-
eter settings of the prediction system are summarized in
Table II. We evaluated three choices of prediction horizons,
seven choices of window length, and seven choices of step
length of the sliding window. In the feature selection step,
we selected eight most important features using the Pudil’s
floating search approach from the training data set (the first
half of EEG recordings of each patient). For the pattern
cluster formulation, we discretized each feature space into
six equal bins. For an 8-dimensional feature space, the
maximum number of possible pattern clusters in the pattern
library is 68 = 1679616.

B. Random Prediction Models

There has been a debate on how well prospective al-
gorithms can predict seizures based on EEG analysis.
Before any clinical application, it is necessary to evaluate
if the designed prediction model is indeed able to perform
better than a chance model. Therefore, we compared the
performance of the proposed adaptive prediction model
with two random prediction schemes that issue warning
irrespectively of recorded EEG signals and depend only on
seizure occurrences. They are periodic prediction schemes
and Poisson prediction schemes. The periodic prediction
scheme gives warnings at a fixed time interval T . The
Poisson prediction scheme issues warnings according to an
exponential distributed random time interval with a fixed
mean λ. We performed the periodic prediction scheme and
the Poisson prediction scheme for each patient. The values
of λ and T were determined according to the average length
of inter-seizure intervals for each patient as shown in Table
I. For example, for patient 1, the averaged inter-seizure
interval is 12.17 hours, we set λ = T = 12.17 hours.
Clearly, this is the best value setting of T and λ the one
could a-priori assume for such schemes.

C. Prediction Performance

Table III summarizes the training and testing prediction
performances of the three prediction schemes in terms of
senblk and speblk. All three online prediction schemes gen-
erated very promising prediction results. In particular, for
the APP scheme, the averaged testing prediction accuracies
of prediction horizons of 30, 90, 150 minutes were 79%,
65%, and 69% respectively. The averaged testing prediction
accuracies for the three prediction horizons for ALP scheme
were 78%, 70%, and 67% respectively; and for ANBP
scheme, 82%, 79%, and 72% respectively. Overall, the
ANBP scheme achieved the best testing prediction accuracy
of 82% using the prediction horizon of 30 minutes. Figure

6, Figure 7, and Figure 8 provide demonstrations of the
three prediction schemes for one patient with their best
training parameter settings. One can see clearly how the
three prediction schemes work in real-time online predic-
tion of epileptic seizures. f

We notice that all three prediction schemes achieved
their best testing accuracies using the prediction horizon
of 30 minutes. With this 30-minute horizon, the average
testing senblk and speblk of the APP scheme were 73% and
84%; of the ALP scheme 80% and 75%; and of the ANBP
scheme 71% and 93% respectively. In addition, the cor-
responding average prediction times were 12.95 minutes,
14.26 minutes, and 9.30 minutes for the APP, ALP, and
ANBP schemes respectively. The short prediction horizon
of 30 minutes and the short prediction times at the level of
10 minitues provide a good time resolution for impending
seizures, and also avoids long awaiting times once a false
prediction occurs. Compared to previous approaches using
longer prediction horizons [10], [11], [24], this improves
the time resolution of seizure prediction. Also the high
sensitivity and specificity values strongly indicate that the
designed prospective prediction schemes are effective in
learning predictive patterns online through our adaptive-
updating learning strategy. For completeness, the prediction
performances of the two random prediction schemes we
tested are summarized in Table IV. The averaged prediction
accuracies of the Poisson and periodic prediction scheme
were both around 50% for all settings of prediction horizon.
The averaged testing prediction accuracies of APP, ALP,
and ANBP are about 60% higher than those of the two
naive predictors. Thus, the proposed approaches perform
much better than chance level. The experimental results are
significan, especially since most of the current approaches
are still striving to work better than a chance level [5].

D. Effectiveness of Adaptive Updating

The three prediction rules were adaptively updated in
online. To evaluate the effectiveness of the online up-
dating strategy, we experimented with different length of
updating periods. That is, we update the decision-making
rules of APP, ALP and ANBP for a portion of the entire
monitoring time, stop updating at some time point, and
keep the decision-making rules unchanged in the remaining
part of online monitoring and prediction process. Figure
9 (a), (b), and (c) show the accuracies of the three pre-
diction schemes with respect to using different portions
for adaptive-updating. Point 0 on the x-axis in our plot
indicates that the prediction rule (score threshold, LDA
hyperplane, or Bayesian inference rule) keeps the initial-
trained form unchanged throughout the prediction process
without any updating. Point 0 on x-axis of each plot
indicates that the prediction rule (score threshold, LDA
hyperplane, or Bayesian inference rule) keeps the initial
form (training dataset) unchanged throughout the prediction
process without any updating at seizures. Point 1 on x-axis
indicates that the prediction rule was updated throughout
the prediction process. The blue and red dashed lines plot
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TABLE II: Computational settings of the online prediction framework for epileptic seizure prediction.

Parameter Setting Setting Choices
Prediction Horizon 30, 90, 150 minutes

1st-level sliding window window size: 10 minutes
(monitor raw time series) moving step length: 1 minute
2nd-level sliding window window size: 15, 30, 60, 90, 120, 150, 180 minutes

(monitor feature time series) moving step length: 1, 3, 6, 9, 12, 15, 18 minutes
Online Prediction Scheme 1. Adaptive-Threshold-Based Prediction Scheme (APP)

2. Adaptive LDA-Based Prediction Scheme (ALP)
3. Adaptive Naive Bayesian-Based Prediction Scheme (ANBP)

Feature Selection Method Pudil’s floating search based on 1-Nearest Neighbour
leave-one-out classification performance.
1-26: Lyapunov exponents of 26 channels of raw EEG

1st-level features 27: averaged pair-wise Euclidean distances
28: averaged pairwise T-statistics
29: averaged pairwise correlations.
1. accumulated vertical increase

2nd-level features 2. accumulated vertical decrease
(temporal pattern feature) 3. percentage of decline periods

4. amplitude range

Fig. 6: a) Demonstration of the APP prediction scheme for patient 10. The vertical black lines that span the graph
indicate seizure occurrences. On top of each seizure line, a mark ’O’ indicates a seizure was correctly predicted and
a mark ’X’ indicates the seizure was miss-predicted. The piecewise horizontal blue line represents the values of the
adaptive score-threshold, which is updated after each seizure occurrence. The black line is the prediction score of the
monitored EEG epochs over time. If it is higher than the score-threshold (the blue line), a prediction alarm is generated.
The red vertical lines represent prediction alarms. The vertical green lines indicates the false-awaiting periods due to
false alarms. b) A magnified snapshot of prediction of one seizure. The brown-colored area indicates the pre-seizure
period. The adaptive threshold, the prediction score, and the prediction warning are annotated in the graph.

the averaged senblk and speblk, respectively. The red solid
line shows the averaged prediction accuracies (PAs) over
the 10 patients.

We observe trends of increase in the overall prediction
accuracy for all three prediction schemes with inclusion

of updating, especially in the beginning of the monitor-
ing process. These increasing trends indicate the strong
learning capability of the proposed prediction schemes.
Without any prior pattern knowledge, the proposed online
learning and prediction framework is indeed effective in
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TABLE IV: The prediction performances of two random prediction schemes (periodic and Poisson) are also reported. The
prediction periods of the periodic and Poisson schemes for each patient are equal to the averaged length of inter-seizure
intervals of the patient.

30 Minutes 90 Minutes 150 Minutes
Poisson Periodic Poisson Periodic Poisson Periodic

Patient senblk speblk Tpred senblk speblk Tpred senblk speblk Tpred senblk speblk Tpred senblk speblk Tpred senblk speblk Tpred

(min) (min) (min) (min) (min) (min)
1 0.03 0.95 13.82 0.00 0.95 5.00 0.08 0.88 52.63 0.02 0.88 78.88 0.23 0.80 100.32 0.12 0.80 110.79
2 0.01 0.98 16.67 0.02 0.99 15.38 0.04 0.95 38.94 0.02 0.96 24.39 0.06 0.93 62.21 0.03 0.93 24.16
3 0.05 0.95 14.87 0.01 0.95 19.42 0.14 0.86 45.03 0.13 0.87 44.98 0.22 0.77 73.82 0.16 0.78 58.51
4 0.02 0.98 16.94 0.01 0.97 17.13 0.07 0.93 42.07 0.08 0.93 41.30 0.10 0.88 69.77 0.12 0.89 67.89
5 0.01 0.97 16.74 0.03 0.97 16.47 0.07 0.92 53.25 0.07 0.93 63.63 0.11 0.87 83.02 0.14 0.88 81.39
6 0.09 0.96 16.23 0.06 0.95 18.88 0.22 0.86 37.64 0.15 0.87 48.17 0.28 0.76 48.83 0.17 0.76 54.81
7 0.04 0.95 14.51 0.04 0.95 14.39 0.12 0.87 49.18 0.11 0.89 41.38 0.24 0.81 87.05 0.24 0.84 85.83
8 0.11 0.95 13.82 0.07 0.95 16.71 0.23 0.86 36.10 0.18 0.86 46.19 0.33 0.76 62.71 0.25 0.77 59.13
9 0.05 0.97 14.92 0.04 0.97 14.13 0.14 0.91 40.26 0.10 0.91 35.99 0.20 0.84 61.13 0.11 0.84 47.51

10 0.02 0.98 15.44 0.02 0.97 14.74 0.07 0.93 53.95 0.06 0.93 29.06 0.15 0.89 78.35 0.06 0.88 37.05
Ave. 0.04 0.96 15.40 0.03 0.96 15.22 0.12 0.90 44.91 0.09 0.90 45.40 0.19 0.83 72.72 0.14 0.84 62.71
PA 0.50 0.50 0.51 0.50 0.51 0.49

Fig. 7: a) A demonstration of the ALP prediction scheme for patient 9. The vertical black lines that span the graph indicate
seizure occurrences. On top of each seizure line, the mark ’O’ indicates a seizure was correctly predicted and the mark
’X’ indicates the seizure was miss-predicted. The blue line in the graph represents the prediction values generated by the
LDA classifier over time. An EEG epoch is classified as ’pre-seizure’ if a LDA-prediction value is higher than 0. The
red vertical line represents prediction alarms over time. b) A magnified snapshot with one seizure. The brown-colored
area indicates the pre-seizure period. The LDA-predicted values and a prediction alarm are annotated in the graph.

learning predictive patterns online for each individual pa-
tient, and construct a personalized adaptive prediction rule
for each patient autonomously. This significant feature of
the proposed prediction system makes it convenient to be
embedded in existing EEG recording systems, and provide
personalized seizure prediction.

IV. CONCLUSIONS

This study investigated the challenging problem of
epileptic seizure prediction. We introduced a new on-
line feature extraction approach to characterize patterns
of massive multivariate EEG data. We also proposed a
new personalized online pattern learning framework by
constructing an online pattern library for each individual

patient. Three adaptive prediction rules were proposed and
tested to perform online prospective seizure prediction from
long-term EEG recordings of 10 patients with epilepsy.
The APP scheme employed a probabilistic prediction rule
to discriminate pre-seizure and normal patterns in discrete
feature space. The ALP scheme employed the binary clas-
sification technique LDA to construct a linear decision
boundary to classify pre-seizure and normal patterns. And
the ANBP scheme employed the Bayesian decision theory
to determine normal and pre-seizure patterns by posterior
probabilities calculated from the pattern library. The ex-
perimental outcomes were promising compared to current
seizure prediction approaches that mostly are offline, non-
adaptive, non-prospective, and non-personalized. The rela-



IEEE TRANSACTIONS ON BIG DATA, PREPRINT 12

Fig. 8: a) A demonstration of the ANBP prediction scheme for patient 3. The vertical black lines that span the graph
indicate seizure occurrences. On top of each seizure line, a mark ’O’ indicates a seizure was correctly predicted and a
mark ’X’ indicates the seizure was miss-predicted. The blue line represents the posterior probability of pre-seizure for a
monitored pattern. The horizontal dot-dashed line is the probability threshold of 0.5. If a posterior probability is higher
than 0.5, it indicates an EEG epoch is more likely to be in ’pre-seizure’ period, and thus a prediction alarm is generated.
The Naive Bayesian prediction rule is updated after each seizure onset. The red line represents prediction alarms over
time. b) A magnified snapshot of prediction for several hours with one seizure onset. The brown-colored area indicates
the pre-seizure period. The LDA, the prediction score, and prediction warning are annotated in the graph.
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Fig. 9: The effectiveness of the adaptive online-updating strategy for the three prediction schemes. In each subplot, the
horizontal axis indicates the portion of seizures the prediction rule was updated. The point 0 means that only the initial
trained prediction rule was employed, and it was unchanged throughout the prediction process. The point 1 means that the
prediction rule was updated in the entire experimental time period. The red line shows the overall prediction accuracies,
the black dashed line shows the speblk, and the blue dash-dotted line shows the senblk. An increasing trend of prediction
accuracy can be clearly observed in each subplot. This observation confirms that the proposed prediction framework has
a strong incremental learning capability and is capable of improving prediction performance online as it learns more
from an individual patient over time.

tive high prediction accuracies achieved in this study reflect
the effectiveness of the proposed online feature extraction

and prediction framework.

For the ALP and ANBP schemes, a potential drawback



IEEE TRANSACTIONS ON BIG DATA, PREPRINT 13

is that the constructed pattern library in continuously may
increase rapidly in size over time. Accordingly, the com-
putational load to re-train the LDA classifier or the Naive-
Bayes Posterior Probabilities could increase significantly
over time. Another drawback for the ALP scheme is that
its prediction performance may be seriously deteriorated
by monitoring noises and outliers. On the other hand, the
probabilistic APP scheme constructs a pattern library based
on pattern clustering. So, the resulting advantage of APP
scheme is that the size of the pattern library is relatively
small due to feature space discretization. Thus, the pattern-
cluster library may only require a small memory space. In
our experiments the total number of stored pattern clusters
was at a level of one thousand, and the number of pre-
seizure pattern clusters was at a level of one hundred.
Another significant technical advantage of the APP scheme
over the other two prediction schemes is that it is not
sensitive to signals noises and outliers for online prediction.
A warning is triggered only if the monitored pattern cluster
is an already identified pre-seizure pattern cluster in the
pattern library. All other monitored patterns (including
any noise patterns and outliers) cannot generate prediction
alarms. This property of the proposed probabilistic APP
prediction is attractive to reduce false alarms in real-life
clinical applications.

This study confirmed the hypothesis that it is possible
to prospectively predict impending seizures. The proposed
adaptive learning framework is capable of self-adjusting
decision boundaries autonomously based on an incremental
online-updated pattern library. Moreover, with online pat-
tern learning ability, the proposed online adaptive prediction
system has a great potential to further improve the predic-
tion performance if more EEG data are available for each
patient. The proposed adaptive learning approach is a pilot
framework that can be potentially benefit a wide range of
patients with epilepsy. The long-term goal of this research
is to design an intelligent machine-learning interface to
achieve accurate personalized seizure prediction. The devel-
oped prediction system could eventually be incorporated in
closed-loop devices that deliver pre-seizure targeted therapy
to the brain to avert seizure occurrence [12].
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