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Abstract. An automatic, electroencephalogram (EEG) based approach of diagnosing de-
pression with regard to memory processing is presented. EEG signals are extracted from
15 depressed subjects and 12 normal subjects during experimental tasks of reorder and re-
hearsal [2]. After preprocessing noisy EEG signals, nine groups of mathematical features
are extracted and classification with support vector machine (SVM) is conducted under a
five-fold cross-validation, with accuracy of up to 70% - 100%. The contribution of this paper
lies in the analysis and visualization of the difference between depressed and control subjects
in EEG signals.
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1 Introduction

Depression, according to [3], is a term referring to a disabling and prevalent psychiatric illness,
major depressive disorder (also known as clinical depression). Depressed patients tend to feel sad
and pessimistic for a long period of time, and they are likely associated with low self-esteem and
tendency to commit suicide, among other negative symptoms. It has been reported that depressed
patients suffer from poor concentration and memory. For the sake of evaluating the effectiveness of
memory retrieval, working memory (WM) and long-term memory (LTM) are the primary research
interest in this work [7]. Techniques of brain signal analysis of EEG with classification framework
in data mining is adopted in this regard. Indeed computer-aided diagnosis using EEG signals
is a popular field of research. Classification framework consists of EEG preprocessing, feature
extraction, feature selection and classifier. Depending on the disorder/disease and framework,
classification accuracy may vary from 80% [4] to 97% [6]. Interested readers are referred to [4], [5],
[6], [11], [12] for more details.

2 Experimental Design and Data Acquisition

Participant Participants were recruited from the University of Texas at Arlington. Each partic-
ipant completed a pre-screen questionnaire which included the Center of Epidemiological Studies
Depression Scale (CES-D) for separating groups of individuals with high and low depressive symp-
tomatology. Individuals who scored 25 or above qualified to be part of the high group, below 15 to
be part of the low group, and 15-25 to be part of the moderate group. A total of 60 individuals -
20 with low depression, 20 with moderate depression, and 20 with high depression - were recruited
for the purposes of this experiment. In this EEG analysis, only data from 15 high depression indi-
viduals (4 males, 11 females; Age: 20.3 ± 3.21) and low depression individuals (4 males, 8 females;
Age: 20.5 ± 2.66) is used due to cleanliness of data and for the sake of binary classification (so
that data from moderately depressed subjects is not used).

Procedure Tasks of varying cognitive difficulty in semantic processing are designed with reference
to [2]. During the entire experimental procedure, EEG signal is measured using the Brain Vision
32 channel system and recorded using the Pycorder software.
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The assessment of working memory (”WM procedure”) consists of ”reorder” and rehearsal”.
For reorder tasks, participants are instructed to mentally reorder the sequence of three pictorial
items based on their physical weight in an arrangement from lightest to heaviest, with 1 repre-
senting the lightest item, 2 representing the mid-weight item, and 3 representing the heaviest item
(”reorder”). For rehearsal tasks, participants were instructed to remember the sequence of three
pictorial items based on their serial order from top to bottom, with 1 representing the top item,
2 representing the middle item, and 3 representing the bottom item (”rehearsal”).

On the other hand, long-term memory is assessed by differentiating ”new” from old images
(”LTM procedure”). After the WM procedure, participants are asked to continue with LTM pro-
cedure by indicating whether each image appears using their right hand (”new”), followed by a
confidence rating of that decision which ranged from 1 to 3, with 1 representing low confidence, 2
representing medium confidence, and 3 representing high confidence using their left hand.

3 Extraction and Classification of EEG Features

Preprocessing of EEG Signals EEG data of 32 electrodes (FP1, FP2, F7, F3, Fz, F4, F8,
FT9, FC5, FC1, FC2, FC6, FT10, T9, T7, C3, Cz, C4, T8, T10, CP5, CP1, CP2, CP6, P7, P3,
Pz, P4, P8, Oz, Oz, O2; see Fig. 2) are imported into Matlab with software package ”EEGLAB”
[8]. EEG signals will then be re-referenced at channels T9 and T10 since these two channels are
least influenced by cognitive processing, resampled from 1000 Hz to 256 Hz for reducing data size,
and bandpass filtered at 1-35 Hz for removing unnecessary signal noise.

Fig. 1: i) WM, Top: On rehearsal trials, participants are instructed to maintain the serial order of the
three presented items (top to bottom), whereas on reorder trials, participants were instructed to mentally
rearrange the items according to their physical weight (lightest to heaviest). ii) LTM, Bottom: Participants
are instructed to recognize whether the image appeared in WM procedure or not.

Epoching After preprocessing, EEG signal is partitioned into different epoches according to the
experiment procedure for working memory and long-term memory. Each participant were shown
504 images, which correspond to 504 trials.

For working memory (Fig. 1), each trial (either reorder or rehearsal) consists of a cue on the
center of the screen (A1, 500 ms), inter-stimulus interval (A2, 1000 ms), showing of the stimuli
(A3, 2000 ms), delay (A4, 4000 ms) and probing for the answer (A5, 2000 ms). Therefore, EEG
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signal of 336 trials, with each trial lasting for 10500 ms (including baseline of 1000 ms before the
start of each trial) are extracted for working memory.

As for long-term memory (Fig. 1), the procedure consists of item recognition (B1, 2000 ms)
and rating the confidence of the recognition (B2, 1500 ms). Therefore, EEG signal of 168 trials,
with each trial lasting for 4500 ms (including baseline of 1000 ms before the start of each trial)
are extracted for long-term memory.

Please note that baseline removal can only be done after epoching with the availability of
baseline signal.

Artifact Removal Artifact is then removed from EEG signal with EEGLAB plugin - ADJUST
(An Automatic EEG artifact Detector based on the Joint Use of Spatial and Temporal features)
[10]. Artifact features including eye blinks, (vertical and horizontal) eye movements and generic
discontinuities are accounted for. The four stages are i) Epoched EEG signal is first decomposed
into different independent components using independent component analysis (ICA); ii) artifact
features for each component are computed; iii) the value of each artifact feature for each component
is to be checked against threshold value computed by Expectation-Maximization [23] in order to
determine whether that component is an artifact; and iv) EEG signal is reconstructed using
independent components which are not rejected.

Feature Extraction Nine groups of mathematical features - statistical features, time-frequency
features, signal power, Hjorth parameters, Hurst exponent, band power asymmetry and spectral
edge frequency - are extracted from each trial of subjects as in [4], [6] and [11]. These nine groups
of features are extracted from EEG signal at each of the 30 channels (2 channels removed after
rereferencing). They are then concatenated as a feature vector. This procedure is applied to all
trials of EEG data for all participants. In the following, X = {x1, x2, ..., xm} denote a single-
channel signal with m time points.

1) Statistical Features: Mean, variance, skewness, kurtosis at theta, alpha, beta and low gamma
bands are computed. More specifically, mean is the averaged signal amplitude, variance measures
the signal variability to the mean, skewness quantifies the extent to which the distribution leans
to one side of the mean, and kurtosis measures the ’peakedness’ of the distribution.

2) Morphological features: Three morphological features at theta, alpha, beta and low gamma
bands were extracted to describe morphological characteristics of a single-channel signal as in [24]
and [25].

• Curve length is the sum of distances between any two pair of consecutive points. Intuition
behind this feature is that curve length increase with the signal magnitude, frequency and
amplitude variation. It is mathematically calculated as follows:

1

m− 1

m−1∑
i=1

|xi+1 − xi| (1)

• Number of peaks measures the overall frequency of a signal. It is mathematically calculated
as follows:

1

2

m−2∑
i=1

max(0, sgn(xi+2 − xi+1)− sgn(xi+1 − xi)) (2)

• Average nonlinear energy, according to [26], is sensitive to spectral changes and is calculated
as:

1

m− 2

m−1∑
i=2

x2i − xi−1xi+1 (3)

3) Time-Frequency Features: Wavelet transform (WT) is a powerful tool to perform time-
frequency analysis of signals. The fundamental idea of WT is to represent a signal by a linear
combination of a set of functions obtained by shifting or dilating a particular function called
mother wavelet [13]. The WT of a signal X(t) is defined as:
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C(a, b) =

∫ R

X(t)
1√
a
Ψ(
t− b
a

)dt (4)

where Ψ is the mother wavelet, C(a, b) are the WT coefficients of the signal X(t), a is the scale
parameter, and b is the shifting parameter. Continuous wavelet transform (CWT) has a ∈ R+

and b ∈ R and discrete wavelet transform (DWT) has a = 2j and b = k2j for all (j, k) ∈ Z
given the decomposition level of j. Since CWT explores every possible scale a and shifting b, it
is generally a lot more computationally expensive than DWT. As a result, DWT is often used
to perform time-frequency analysis of a signal at different decomposition levels [14]. The DWT
coefficients provide a non-redundant and highly efficient representation of a signal in both time
and frequency domain. At each level of decomposition, DWT works as a set of bandpass filters to
divide a signal into two bands called approximations and details signals. The details (D) are the
high-frequency components. Among different wavelet families, we employed Daubechies wavelet as
it is frequently used in physiological signal analysis due to its orthogonality property and efficient
filter implementation [15]. A 4-level discrete wavelet transform (DWT) decomposition was applied
to the collected signals with the sampling rate of 256 Hz. Table 1 lists the decomposed signals D1,
D2, D3 and D4, which roughly corresponded to the commonly recognized brain signal frequency
bands theta, alpha, beta, and gamma, respectively.

Decomposed Level Frequency Range (Hz) Approximate Band

D1 4-8 Theta
D2 8-12 Alpha
D3 12-25 Beta
D4 25-40 Gamma

Table 1: Frequency bands of signals by discrete wavelet decomposition.

After the four-level DWT decomposition, a set of wavelet coefficients can be obtained for
each decomposed signals. To further decrease feature dimensionality, we employed a measure of
wavelet coefficients called wavelet entropy (WE), which indicates the degree of multi-frequency
signal order/disorder in the signals [27]. To obtain WE, the first step is to calculate relative wavelet
energy for each decomposition level as follows:

pj =
Ej

Etotal
=

Ej∑n
j=1Ej

(5)

where j is the resolution level, and n is the number of decomposed signals (n = 5 in this
study). Ej is the wavelet power, the sum of squared wavelet coefficients, of decomposed signal j.
The relative wavelet energy pj can be considered as the power density of the decomposed signal
level j. Similar to Shannon entropy [28] for analyzing and comparing probability distributions,
the WE is defined by

WE = −
n∑
j=1

pj ∗ ln(pj)] (6)

WE characterizes the order/disorder of signals powers in the five brain signal frequency bands
(theta, alpha, beta and gamma) during the experiment.

4) Signal Power: Adopting the signal features used in a previous work [16], ”band power” of
EEG signals for each channel in commonly used frequency bands of brain signal including theta
(4-8 Hz), alpha (8-12 Hz), beta (12-25 Hz), and gamma bands (25-40 Hz) is computed. On the
other hand, ”relative band power” at each channel is computed as the ratio of the band power of
the individual band over the sum of band power of all four bands.

5) Hjorth Parameters: Hjorth parameters, namely activity, mobility, and complexity, are fre-
quently used in signal processing since its introduction by Bo Hjorth in 1970. These time-domain
features are commonly used in brain signal analysis as in [6], [17].
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6) Hurst Exponent: It is a statistical measure used to detect autocorrelation in time-series
data such as EEG signal (usually notated as H) . If the value of H is 0.5, it indicates that the
time-series data is a random series, whereas H > 0.5 indicates a trend reinforcing series [18].

7) Band Power Asymmetry: Asymmetry of power in theta, alpha and beta bands between
different regions (inter-hemispheric) and within the same region (intra-hemispheric) of the brain,
as in Fig. 2, are computed as features [21].

Fig. 2: Illustration of 4 groupings of channels (out of 32 according to 10-20 system) for inter- and intra-
hemisphere band-power asymmetry. They correspond to left frontal, right frontal, left parietal and right
parietal areas of the brain. T9 and T10 are not available after re-referencing.

8) Spectral Edge Frequency: It measures the frequency below which a certain percentage of
total power of the EEG time-series signal [19]. In this project, percentage values of 50%, 90% and
95% are considered.

9) Zero Crossing: It is the number of points where the sign of the EEG signal changes from
positive to negative (or vice versa).

Table 2 summarizes the features extracted in this work.

No Group Name
Features (Generated at 30 channels and 4

bands except for groups 2-3, 5-9)
Count

1 Statistical
Mean, variance, skewness, kurotsis (at

each channel)
120

2
Morphologi-

cal
Curve length, number of peaks, average

nonlinear energy (at each channel)
90

3
Time-

frequency

Wavelet Entropy (power ratio of theta,
alpha+low beta, beta and low gamma,

alpha to beta ratio)
180

4 Signal Power Band power and Relative band power 240

5 Hjorth
Activity, mobility, complexity (at each

channel)
90

6 Hurst - (at each channel ) 30

7
Band Power
Asymmetry

Asymmetry of inter-hemisphere and
intra-hemisphere band power

68

8
Spectral Edge

Frequency
Percentage values of 50%, 90% and 95%

(at each channel )
90

9 Zero Crossing - (at each channel ) 30

Table 2: Summary of Groups of Mathematical Features Employed in this Classification Study
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Feature Selection Feature selection method ”minimal-redundancy-maximal-relevance criterion”
(mRMR) [20] is used. mRMR aims at selecting a subset of feature set based on the statistical
property of a target classification variable, subject to the constraint that the features are mutu-
ally dissimilar to each other but at the same time marginally similar to the target classification
variable. Because of its first-order incremental nature, mRMR selects features very quickly without
sacrificing classification performance. The number of features chosen in this classification study is
100.

Classifier Support vector machine with radial basis function (RBF) kernel from Matlab (name
of the function is fitcsvm) is used.

In binary classification, SVM basically seeks a separating hyperplane which maximizes the
distance between two classes of data points in order to differentiate data point of one class from
another. To ease the use of kernel trick, the dual formulation (7) of SVM is usually considered, in
which x is the feature vector (or data point in machine learning terminology) selected from the
last step, and y is the class of that feature vector:

maximize
α

n∑
i=1

αi −
1

2

∑
i,j

αiαjyiyjK(xi, xj)

subject to

n∑
i=1

αiyi = 0, i = 1, . . . , n

C ≥ αi ≥ 0, i = 1, . . . , n.

(7)

If
∑l
i=1 αyiK(xTi x) + b ≥ 0 (where l is the number of features), the data point is classified

to be depressed subject; otherwise, it is classified to be control subject. The RBF kernel on two
samples x and y is given by:

K(x, y) = exp(−||x− y||
2

2σ2
) (8)

Cross Validation Data will be divided into five (5) folds for cross validation (CV). In each fold of
CV, 80% of data are used for training the classification model by tuning the hyper-parameters with
grid search (namely C in equation (7) and σ in equation 8 for SVM), whereas the remaining 20%
will be used for testing the trained model. Testing accuracy is the main measure of classification
performance, which is calculated as the number of correctly predicted class of subjects in each
trial (i.e. depressed or control) over the total number of trials available from all subjects in an
epoch:

acc =
no. of correctly predicted class of subjects from all trials

no. of trials available from all subjects in an epoch
(9)

4 Experimental Result and Analysis

WM LTM
A1 A2 A3 A4 A5 B1 B2

Reorder 92% 100% 98% 86% 86% 73% 77%

Rehearsal 86% 91% 83% 86% 89% 86% 75%

New - - - - - 57% 68%

Table 3: Classification Accuracy with SVM for Epoches in working memory (WM) and long-term memory
(LTM). A means WM (A1: Cue, A2: Inter-stimulus interval, A3: Stimuli, A4: Delay, A5: Probe), whereas
B stands for LTM (B1: Item Recognition, B2: Confidence Rating).

Table 3 shows the accuracy of classifying subjects with high depression from those with low
depression under different experimental tasks and epoches. The higher the accuracy, the greater
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the difference between the depressed and control subjects in performing experimental tasks. On the
other hand, the epoch with high classification accuracy is investigated in order to better identify
the difference between the two groups of subjects.

As mentioned before, each trial of WM procedure consists of a cue (A1), inter-stimulus interval
(A2), showing of the stimuli (A3), delay (A4) and probing for the answer (A5). In these epoches,
A3 is the time at which memory encoding takes place, and A4 is the time at which memory
processing happens. As for long-term memory procedure, each trial consists of item recognition
(B1) and rating the confidence of the recognition (B2). Therefore, B1 is the time at which retrieval
of long-term memory takes place. Accuracy in ”reorder” tasks is generally higher than those of
”rehearsal” as a result of greater difficulty of cognitive processing required by ”reorder” tasks [9].
Accuracy in ”new” tasks is lowest among three kinds of tasks because of the same reasoning.

Epoches A3, A4 and B1 are worth investigating. It is because memory encoding and retrieval
of working memory take place at epoches A3 and A4 respectively, whereas memory retrieval of
long-term memory takes place at epoch B1. One way to investigate these epoches would be to
consider the top 3 features (out of 100 selected by the mRMR algorithm) used for classification.
There are 27 subjects, and therefore each feature (vector) under consideration consists of 27 values,
with each one extracted from the EEG signal of one subject. Figures 3, 4 and 5 are the boxplots
plotted with these 27 values of each feature.

An observation in this regard is that the higher the classification accuracy in that epoch,
the farther the distance between the boxes of the depressed and control subjects. An example
supporting this notion is epoch A3 for reorder tasks (figure 3), having accuracy of 98%. Its top
feature is relative band power at alpha band (FC5) - the box of depressed does not overlap with
that of the control completely.

Fig. 3: Boxplot of Top 3 Features Used for Classification in Epoch A3. The top 3 features for reorder tasks
are relative band power at beta (FC5), relative wavelet entropy of gamma band (CP2) and asymmetry
inter-hemisphere band power at beta, whereas those for rehearsal tasks are asymmetry of intra-hemisphere
band power at gamma, wavelet ratio of alpha to beta (Oz) and relative band power at alpha (F3).

In addition to the above, topographical plots (figure 6) at epoches A3, A4 and B1 for theta (4-8
Hz) and alpha (8-12 Hz) bands are plotted with average EEG signal of trials after preprocessing.
With topographical plots, activation in different frequency bands can be considered over the 30
EEG channels.

In epoch A3 (both theta and alpha bands), left prefrontal area is observed to have greater
activation for control over depressed subjects for reorder task. Surprisingly, no distinct difference
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Fig. 4: Boxplot of Top 3 Features Used for Classification in Epoch A4. The top 3 features for reorder tasks
are kurtosis (C4), asymmetry of inter-hemisphere band power at theta and band power at gamma (C4),
whereas those for rehearsal tasks are standard deviation (F7), spectrum edge frequency at 95% (T8) and
relative band power at theta (FC6).

Fig. 5: Boxplot of Top 3 Features Used for Classification in Epoch B1. The top 3 features for reorder
tasks are relative wavelet entropy at alpha and low beta (FC6), mean (Cz) and skewness (FC6), those for
rehearsal tasks are curve length (Fp1), skewness (O2) and relative wavelet entropy at alpha and low beta
(CP1), and those for new tasks are average non-linear energy (F7), skewness (FT9), and asymmetry of
inter-hemisphere band power at beta.
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between depressed and control subjects can be found in epoch A4. Last but not least, there is
stronger activation found in occipital area for control over depressed subjects at epoch B1 for new
task.

Fig. 6: Plots of relative topographical distribution of mean log power spectrum of theta and alpha bands
at epoches A3 (showing of stimuli), A4 (Delay) and B1 (Item Recognition). These plots are generated
with EEGLAB function ”spectopo” and ”topoplot”.

5 Conclusion

This study investigated the difference of memory processing between depression and control groups
using EEG signals. An extensive EEG feature study has been performed using the most popular
techniques of feature extraction in the up-to-date literature. The popular technique of feature
selection, minimal-redundancy-maximal-relevance criterion (mRMR), has been employed to iden-
tify the most discriminative EEG features among the two groups of subjects. Classification using
support vector machine with RBF kernel showed that the depressed subjects indeed exhibited
different patterns of brain activity in the processing of both working and long-term memory, with
classification accuracies higher than 80%. The top EEG features showed significantly different
distributions between two groups of subjects. This preliminary data-driven study indicates that
depression can affect a subject’s memory processing considerably. In the future work, more statis-
tically valid neural signatures of depression with regard to its effect to memory processing will be
investigated and explored using advance data mining and machine learning techniques. The long-
term goal of this study is to facilitate the understanding of neural mechanism of depression, and
to develop better data-driven tools for diagnosis and treatment of depression in clinical practice.
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