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Abstract. There has been much interest in the beneficial effects of musical training on
cognition. Previous studies have indicated that musical training was related to better
working memory and that these behavioral differences were associated with differences
in neural activity in the brain. However, it was not clear whether musical training
impacts memory in general, beyond working memory. By recruiting professional musi-
cians with extensive training, we investigated if musical training has a broad impact on
memory with corresponding electroencephalography (EEG) signal changes, by using
working memory and long-term memory tasks with verbal and pictorial items. Behav-
iorally, musicians outperformed on both working memory and long-term memory tasks.
A comprehensive EEG pattern study has been performed, including various univariate
and multivariate features, time-frequency (wavelet) analysis, power-spectra analysis,
and deterministic chaotic theory. The advanced feature selection approaches have also
been employed to select the most discriminative EEG and brain activation features
between musicians and non-musicians. High classification accuracy (more than 95%)
in memory judgments was achieved using Proximal Support Vector Machine (PSVM).
For working memory, it showed significant differences between musicians versus non-
musicians during the delay period. For long-term memory, significant differences on
EEG patterns between groups were found both in the pre-stimulus period and the
post-stimulus period on recognition. These results indicate that musicians memorial ad-
vantage occurs in both working memory and long-term memory and that the developed
computational framework using advanced data mining techniques can be successfully
applied to classify complex human cognition with high time resolution.

1 Introduction

There has been much interest in the beneficial effects of musical training on cognition. Previous
studies have indicated that musical training was related to better working memory and that
these behavioral differences were associated with differences in neural activity in the brain[1].
However, it was not clear whether musical training impacts memory in general, beyond work-
ing memory. By recruiting professional musicians with extensive training, we investigated if
musical training has a broad impact on memory with corresponding electroencephalography
(EEG) signal changes, by using working memory and long-term memory tasks with verbal and
pictorial items. Behaviorally, musicians outperformed on both working memory and long-term
memory tasks. A comprehensive EEG pattern study has been performed, including various
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univariate and multivariate features, time-frequency (wavelet) analysis, power-spectra anal-
ysis, and deterministic chaotic theory. The advanced feature selection approaches have also
been employed to select the most discriminative EEG and brain activation features between
musicians and non-musicians[2]. High classification accuracy (more than 95%) in memory
judgments was achieved using Proximal Support Vector Machine (PSVM)[3]. For working
memory, it showed significant differences between musicians versus non-musicians during the
delay period. For long-term memory, significant differences on EEG patterns between groups
were found both in the pre-stimulus period and the post-stimulus period on recognition. These
results indicate that musicians memorial advantage occurs in both working memory and long-
term memory and that the developed computational framework using advanced data mining
techniques can be successfully applied to classify complex human cognition with high time
resolution.

2 Methodology

2.1 Data Acquisition and Experimental Settings

Participants Initially, 36 musicians and non-musicians participated into the experiments.
In those 36 participants, some of them were excluded based on behavioral observation and
outlier analysis. If participants are failed to follow the instruction, they will be excluded.
Two of them fell into this category and were excluded. Cook’s D values of both short-term
and long-term memory tests were calculated to identify outliers. Subsequently, four of them
were excluded due to having negative Cook’s D values on the long-term memory test. One
participant achieved higher than 3 standard deviations so he was also excluded from the
data. Finally, 29 subjects were remained for analysis. We had 14 professional musicians who
have over 10 years of experience. Five of them were female. The average of experience is
22.9 years. We also had 15 participants without any musical training. They were marked
as ”non-musicians”. Among them, eight were female. Informed consent was obtained from
all participants in accordance with the experimental protocol approved by the University of
Texas Institutional Review Board.

Design of the Experiments The whole experiment was separated into two parts: 1. a study
session Participants completed a study session followed by a test session involving words and
pictures as stimuli. Stimuli were presented visually on a computer and all responses were
made using the keyboard. During the study session, participants were presented with pairs of
stimuli, one at a time. Each study trial began with a fixation cross (250 ms), the first stimulus
(1000 ms), a blank screen (5000 ms), the second stimulus (2500 ms or until a response), and
finally a blank screen (1000 ms). Upon presentation of the second stimulus, participants made
a judgment of whether the second stimulus was the same as the first (Figure 1a).

A few minutes following the study session, participants memory was tested. During this
test session, stimuli presented during study were presented again along with new stimuli that
had not been studied. Further, we only tested participants memory on stimuli that had only
been presented once. Therefore, only stimuli presented on trials that were different during
the study session (i.e. trials on which the second stimulus was different from the first) were
presented during test. Each test trial began with a fixation (250 ms), followed by a stimulus
(3000 ms or until a response), and then a blank screen (1250 ms). Upon presentation of the
stimulus, participants made a memory judgment which included a rating of how confident they
were in their memory (Figure 1b). They were allowed to make three responses: remember with
low confidence, remember with high confidence, or new.
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Word and picture stimuli were blocked for both study and test phases, such that each
participant was presented with a block of word trials followed by a block of picture trials
(or vice versa). Whether or not participants were presented with words or pictures first was
randomly determined for each participant.

Types of Stimuli Participants were presented with pictures of complex scenes and words.
During the study session, participants completed 96 trials of pictures (32 same, 64 different)
and 96 trials of words (32 same, 64 different). Given that each trial contained two stimulus
presentations, participants studied a total of 128 pictures and 128 words from different trials.
These 248 studied stimuli were then used to test long-term memory during the test session.
During the long-term memory task, participants completed 192 trials of pictures (128 studied,
64 new) and 192 trials of words (128 studied, 64 new).

(a) A. Study

(b) B. Test

Fig. 1: Schematic of experimental paradigm. A1 to A5) During study period, participants
were asked to judge whether the second stimulus matched the first. B1 to B3) During test
period, participants made memory judgments to stimuli while rating their confidence. Low
represents remember with low confidence, High represents remember with high confidence,
and New represents a judgment where participants thought the stimulus was not studied.

EEG data EEG data were collected during both study and test sessions using the Brain
Vision ActiChamp 32 channel system and recorded using the Pycorder software. Electrode
positions followed the 10-20 system and included Fz, Cz, Pz, Oz, Fp1, Fp2, F3, F4, F7, F8,
Fc1, Fc2, Fc5, Fc6, Ft9, Ft10, T7, T8, C3, C4, Cp1, Cp2, Cp5, Cp6, Tp9, Tp10, P3, P4, P7,
P8, O1, and O2 according to standard 10/20 system. During recording, data were sampled
at 1000 Hz and filtered between .01 and 100 Hz. Offline, data were high-pass filtered with
a 0.1 Hz Butterworth filter, downsampled to 256 Hz, and referenced to the average of the
mastoids (TP9 and TP10). Post-stimulus ERPs with a 1000 ms duration were extracted and
were baseline-corrected with respect to a 200 ms prestimulus baseline. Visual inspection was
then used to remove epochs that contained eye blinks and movement artifacts using a recently
developed automatic ICA-based algorithm, called ADJUST [4].
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2.2 Spatiotemperol Pattern Based Artifacts Removal

Brain signals often contain significant artifacts that lead to major problems in signal anal-
ysis, when the activity due to artifacts has a higher amplitude than the one due to neural
sources. The common sources of artifacts include eye movements, muscle contractions, elec-
tric devices interference [5]. Independent Component Analysis (ICA) has been successfully
applied for artifacts removal in many studies. The basic idea is to decompose the brain data
into independent components, determine the artifacted components using pattern and source
localization analysis, and reconstruct the brain signals by excluding those artifacted compo-
nents. However, linking components to artifact sources (e.g., eye blinking, muscle movements)
remains largely user-dependent. In this study, we employed ADJUST for signal artifact re-
moval. ADJUST applies stereotyped artifact-specific spatial and temporal features to identify
independent components of artifacts automatically. These artifacts can be removed from the
data without affecting the activity of neural sources [4]. The data analysis in the following is
based on the ’cleaned’ data after artifact removal.

2.3 Signal Feature Extraction

We extensively investigated features from the collected physiological signals. Four groups of
feature extraction techniques were employed to capture signal characteristics that may be
relevant to assess memory workload. They were signal power, statistical, morphological, and
wavelet features. [6] For a data epoch with n channels, we first extracted features from signals
at each channel, and then concatenated the features of all the n channels to construct the
feature vector of the data epoch. The feature extraction of four groups of signal features are
listed in Figure 2. [7]

Table 1: Frequency ranges and the corresponding brain signal frequency bands of the four
levels of signals by discrete wavelet decomposition.

Decomposed Level Frequency Range (Hz) Approximate Band

D1 32-64 Gamma
D2 16-32 Beta
D3 8-16 Alpha
D4 4-8 Theta

2.4 Feature Vector Classification Using Proximal Support Vector Machine
(PSVM)

Classification Method In the experiments, we collected data from four difficulty levels (0-,
1-, 2-, 3-back). A popular binary classification technique, support vector machine (SVM),
was employed to investigate the data separability at different mental workload levels. SVM
techniques have been successfully applied in many classification problems. [17–21] The funda-
mental problem of SVM is to build an optimal decision boundary to separate two categories
of data. Let X denote a n × k dimensional feature vector for a multi-channel data session
at certain difficulty level, where n is the number of signal channels and k is the number of
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Table 2: 19 groups of features are considered. Sub-features are considered in some groups by
means of considering various frequency bands and/or different statistics.

F Features (F) sub-features (f)
1 Basic Statistics average; variance; skewness; kurtosis
2 Curve Length [8, 9] Curve Length
3 Peak Count Peak Count
4 Average Nonlinear Energy [10, 11] Average Nonlinear Energy
5 Zero Crossing Zero Crossing
6 Spectral Edge Frequency [12] Spectral Edge Frequency
7 Band Power 4 to 8; 8 to 13; 13 to 25; 25 to 40 (Hz)
8 Relative Band Power 4 to 8; 8 to 13; 13 to 25; 25 to 40 (Hz)
9 Inter-regional Asymmetry [13] left vs right channels;

left groups: ([1 3 7], [4 5 6 9], [8 10 11 13]) vs
right groups: ([27 28 30], [24 25 26 29], [18 20 21 23])

10 Intra-regional Asymmetry [13] left groups: ([1 3 7], [4 5 6 9], [8 10 11 13]) vs
right groups: ([27 28 30], [24 25 26 29], [18 20 21 23])

11 Hurst Hurst
12 Hjorth activity, mobility, complexity
13 Barlow amplitude, frequency, SPI
14 Wavelet Entropy [14–16] Wavelet Entropy, power ratio of theta, alpha+low beta,

beta and low gamma, alpha to beta ratio
15 Brain Rate Brain Rate
16 Wackermann Sigma, Phi, Omega
18 Wavelet Statistics max, mean, stdev of bands 4 to 8, 8 to 16, 16 to 32, 32 to 64 (Hz)
19 Range to Variance Ratio Range to Variance Ratio
20 Network Correlation Network Correlation
21 Approximate Entropy Approximate Entropy

features of each channel. To classify data between musicians and non-musicians, let l denote
the sample class label and l = 1 denotes musician, and l = −1 means non-musician.

Assume we have p sessions of level one denoted by S1 = {(X1, l1), (X2, l2), ..., (Xp, lp)},
and q sessions of level two denoted by S2 = {(Xp+1, lp+1), (Xp+2, lp+2), ..., (Xp+q, lp+q)}. Each
session is represented by a n × k dimensional feature vector. One can find infinitely many
hyperplanes in Rn×k to separate the two data groups.

Standard SVM classifiers, such as Langragian Support Vector Machine (LSVM), usually
require a large amount of computation time for training. Mangasarian and Wild [22] claims
the Proximal SVM (PSVM) algorithm was about 10 to 20 times faster than LSVM. The
formulation for the linear PSVM is described as follows:

minω,ξ,b{ 12 (‖ω‖2 + b2) + 1
2Cξi

T ξi : D(XTω + be) = e− ξi}, (1)

where the traditional SVM inequality constraint is replaced by an equality constraint.
This modification changes the nature of the support hyperplanes (ωTX + b = ±1). Instead of
bounding planes, the hyperplanes of PSVM can be thought of as ‘proximal’ planes, around
which the points of each class are clustered and which are pushed as far apart as possible
by the term (‖ω‖2 + b2) in the above objective function. It has been shown that PSVM has
comparable classification performance to that of standard SVM classifiers, but can be an order
of magnitude faster [22]. Therefore, we employed PSVM in this study.

Training and Evaluation A classification problem generally follows a two-step procedure which
consists of training and testing phases. During the training phase, a classifier is trained to
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achieve the optimal separation for the training data set. Then in the testing phase, the trained
classifier is used to classify new samples with unknown class information. The N-fold cross-
validation is an attractive method of model evaluation when the sample size is small. It is
capable of providing almost unbiased estimate of the generalization ability of a classifier. For
the 29 subjects, the total number of data samples (trials) for session A and B are 192 and
386 respectively. We designed a 2-fold cross-validation method to train and evaluate the SVM
classifier.[23]

To explore the differences of the responses of musicians and non-musicians under various
events, we separate the data into five and three epochs for session A and B respectively based
on the test phases as shown in Figure 1. In addition, A3 is further separated into five pieces
with one second for each piece in order to study various parts of A3. We also study the first
l ∈ 0.4, 0.6, 0.8, 1, 1.5 seconds of B2. These subsegments are denoted as A21,A22,...,A25 and
B21,B22,...,B25. Based on the event markers of the EEG data, we define 12 conditions for
session A and 21 conditions for session B. The following table lists all of the conditions.

Table 3: Based on event labels, 12 and 21 conditions are defined for Group A and Group B
respectively. All samples, Pictures only and Words only are considered. In these three subsets,
we further split them into cases of Hit, Miss and Correct Rejection. In Group B, among those
cases of Hit and Correct Rejection, we further split those subset by the responses, i.e. Low
Confidence, High Confidence and New.

Group A Group B

CD event CD event CD event

1 All samples 13 All samples 25 All samples & Low Confidence & Correct

2 Pictures 14 Pictures 26 All samples & High Confidence & Correct

3 Words 15 Words 27 All samples & New & Correct

4 All samples & Hit 16 All samples & Hit 28 Pictures & Low Confidence & Correct

5 All samples & Miss 17 All samples & Miss 29 Pictures & High Confidence & Correct

6 All samples & Correct Rejection 18 All samples & Correct Rejection 30 Pictures & New & Correct

7 Pictures & Hit 19 Pictures & Hit 31 Words & Low Confidence & Correct

8 Pictures & Miss 20 Pictures & Miss 32 Words & High Confidence & Correct

9 Pictures & Correct Rejection 21 Pictures & Correct Rejection 33 Words & New & Correct

10 Words & Hit 22 Words & Hit
11 Words & Miss 23 Words & Miss
12 Words & Correct Rejection 24 Words & Correct Rejection

In testing, for each comparison group, we divided the corresponding data samples into 5
non-overlapping subsets. Each time we picked one subset out and trained the PSVM classifier
by the data samples of another set. The samples of the left-out subset were considered as
unknown samples to test the performance of the trained classifiers. Repeating this procedure
again for another set, the averaged prediction accuracy over the 5-fold runs was used to
indicate the degree of separability of the EEG signals of musicians and non-musicians.

To achieve reliable feature selection, we employed an advanced feature selection technique,
called minimum redundancy maximum relevance (mRMR) [24], which allows us to select a
subset of superior features at a low computational cost in a high dimensional space.

The basic idea of mRMR is to select the most relevant features with respect to class
labels while minimizing redundancy amongst the selected features. The mRMR algorithm
uses mutual information as a distance measure to compute feature-to-feature and feature-to-
class-label non-linear similarities.
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3 Experimental Results

Before going into the classification results, Figure 2 shows percentage of hit rate, correct
rejection rate and the corresponding standard deviation. We noted that musicians had higher
hit rate on picture than non-musicians. Also, musicians performed better in working memory
task but they performed worse in long term memory task than non-musicians.

Fig. 2: The above bar charts show the percentages of the average (blue) and the standard
deviation (orange) of hit or correct rejection rate for musicians and non-musicians in Working
memory task and Long-Term memory task. It shows that musicians perform better in Working
memory but worse in Long-Term memory.

Table 4 is a summary of classification accuracy on various conditions. On response period
(B2) of long-term memory data as well as maintain period (A3)and response period (A4) of
working memory, we obtained high classification accuracy. We also observed that miss events
obtained high classification accuracy in general.

Figure 3 shows that conditions 1 to 12 (Group A) have higher area under the curve (AUC).
It is obvious that EEG of musicians and non-musicians have the most difference during short
term memory task.

Figure 4 are the topographies of band power of musicians (left) and non-musicians (right).
We note that musicians have larger range of bandpower values than non-musicians. Also,
musicians tend to be active on multiple locations while non-musicians tend to be active only
on the front lobe. In this study, we also investigated the effect of ICA artifact removal and
found that the effect was significant. It improves the classification accuracy by 10% in general.

4 Conclusion and Future Work

In this study, we made a comprehensive EEG data mining study to investigate and compare
cognitive memory processing for musicians and non-musicians. We presented a computational
EEG pattern analysis and classification framework, which integrated the most recent advances
in automated spatiotemporal artifact removal, a broad selection of most popular EEG feature
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Table 4: Summary of classification accuracy on various conditions and epochs in working and
long-term memory tasks.

Study period (Working Memory) Test Period (Long-Term Memory)
A1 A2 A3 A4 A5 B1 B2 B3

Conditions Pre-Stim Stim1 Maintain Response Post-Stim Pre-Stim Response Post-Stim

All samples 83.78 70.27 83.78 83.78 72.97 66.67 75 69.44

Pictures 75.68 70.27 72.97 72.97 67.57 78.78 75 72.22

Words 81.08 72.97 86.49 78.38 64.86 88.89 69.44 62.86

All Hit 64.86 72.97 81.08 78.37 72.97 87.5 91.67 64.29

All - Miss 64.86 70.27 83.78 83.78 72.97 82.61 83.33 90.63

All Corr. Rej. 89.19 67.57 78.35 83.78 67.57 52.17 88.89 80.65

Picture Hit 78.38 78.38 67.57 70.27 70.27 63.64 75 73.53

Picture - Miss 78.38 83.78 72.97 72.97 78.38 73.68 75 72.41

Picture - Corr. Rej. 62.16 70.27 72.97 64.86 59.46 79.95 72.22 80.65

Word Hit 59.46 64.86 75.68 67.57 67.57 55 86.11 68.75

Word - Miss 59.46 78.38 64.86 70.27 78.38 73.68 77.78 80

Word Corr. Rej. 72.97 70.27 83.78 67.57 64.86 84.21 69.44 75.86

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

AUC by condition

Fig. 3: This is a boxplot of AUC of all models using only one sub-feature at a time among
various epochs aggregated by condition. For each box, there are 68 sub-features, 8 to 10
epochs and so there are roughly 700 results. Obviously, working memory(condition 1 to 12)
have better classification results than long term memory.

extraction techniques, an information-theory-based feature selection, and a PSVM classifi-
cation model. The experimental results show that the EEG patterns of the active memory
encoding process at the maintain period indeed demonstrated significant differences between
musicians and non-musicians. Our study found that musicians overall demonstrated better
and more accurate memory performance in both short-term and long-term memory tasks. In
particular, the EEG brainwave differences of musicians were more significant on the short-
term memory tasks compared to the non-musician group. From the four common EEG band
power study, we noted that the musicians were significant more active in frontal areas in
alpha, beta, and low gamma bands than non-musicians. This may indicate that the long-time
music training can sharpen brain pathways in memory processing with a more active brain
activity during memory tasks. More analysis on EEG spatiotemporal patterns and memory
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(a) Maintain Period in Working Memory for Miss
conditions

(b) Maintain Period in Working Memory for Hit
conditions

(c) Response Period in Long Term memory for
Miss conditions

(d) Response Period in Long-Term memory for
All Hit

Fig. 4: Comparison for averaged four EEG band power between musicians and non-musicians
in response and maintain period. In all conditions, musicians demonstrate higher level of
activity in frontal area. Their values are about 50% higher than non-musicians. Musicians are
also more active in several more areas(frontal right area, middle left area and back area) while
non-musicians mainly only use their frontal area. This pattern is more obvious in long term
memory.

brain network will be investigated in future works. The integrated computational framework
developed in this study also provides a powerful tool to perform EEG signal processing and
pattern analysis, and can be useful in many other applications that involve pattern recognition
or abnormality detection in multivariate EEG signals.
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