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Using Wireless EEG Signals to Assess Memory
Workload in the n-Back Task
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Abstract—Assessment of mental workload using physiological
measures, especially electroencephalography (EEG) signals, is an
active area. Recently, a number of wireless acquisition systems to
measure EEG and other physiological signals have become avail-
able. Few studies have applied such wireless systems to assess cogni-
tive workload and evaluate their performance. This paper presents
an initial step to explore the feasibility of a popular wireless system
(Emotiv EPOC headset) to assess memory workload levels in a well-
known n-back task. We developed a signal processing and classifi-
cation framework, which integrated an automatic artifact removal
algorithm, a broad spectrum of feature extraction techniques,
a personalized feature scaling method, an information-theory-
based feature selection approach, and a proximal-support-vector-
machine-based classification model. The experimental results
show that the wirelessly collected EEG signals can be used to
classify different memory workload levels for nine participants.
The classification accuracies between the lowest workload level
(0-back) and active workload levels (1-, 2-, 3-back) were close to
100%. The best classification accuracy for 1- versus 2-back was
80%, and 1- versus 3-back was 84%. This study indicates that
the wireless acquisition system and the advanced data analytics
and pattern recognition techniques are promising to achieve real-
time monitoring and identification of mental workload levels for
humans engaged in a wide variety of cognitive activities in the
modern society.

Index Terms—Classification, cognitive workload, electroen-
cephalogram (EEG), feature selection, memory load, wireless neu-
roimaging systems.

I. INTRODUCTION

M ENTAL workload describes the level of mental re-
sources utilized when a person is performing a task [1].

The ability to process information, to react to the surround-
ings, and to make decisions is critical for people in the modern
knowledge society. Mental workload assessment can be useful in
monitoring and assisting people at work, as well as in evaluating
and designing systems or working environments. Mental work-
load assessment techniques include subjective measures, per-
formance measures, and physiological measures [2], [3]. Both
subjective and performance measures are typically taken at one

Manuscript received May 13, 2014; revised October 2, 2014, January 17,
2015, and April 28, 2015; accepted August 16, 2015. Date of publication
September 28, 2015; date of current version May 13, 2016. This paper was
recommended by Associate Editor E. J. Bass.

S. Wang is with the Department of Industrial and Manufacturing Systems
Engineering, University of Texas at Arlington, Arlington, TX 76019 USA
(e-mail: shouyiw@uta.edu).

J. Gwizdka is with the School of Information, University of Texas, Austin,
TX 78701 USA (e-mail: ieee-thms-2015@gwizdka.com).

W. A. Chaovalitwongse is with the Departments of Industrial and Systems
Engineering and Radiology, University of Washington, Seattle, WA 98105 USA
(e-mail: artchao@uw.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 

point after the task is completed and are thus static. Subjective
measures may also potentially suffer from bias [4]. Compared
with subjective and performance measures, physiological mea-
sures can provide a continuous record of workload over time
and their measurement does not interfere with primary task per-
formance. Thus, physiological measures may be more useful
and suitable to assess human mental workload. Understanding
human brain functions and neural mechanisms in relation to
performance in everyday activities is an important area in neu-
roscience and neuroergonomics research [5].

Several neuroimaging techniques are available for investi-
gating brain functions research including functional magnetic
resonance imaging (fMRI), electroencephalography (EEG), and
functional near-infrared spectroscopy (fNIRS). fMRI provides
the best means for localizing neural activity, but it has poor tem-
poral resolution and participants have to lie still in a highly con-
strained environment instead of being in their normal working
environments. fNIRS devices are portable and relatively conve-
nient for long-term monitoring and thus have been applied to
assess cognitive workload [6], [7]. However, fNIRS, similar to
fMRI, has a relatively poor temporal resolution. Conversely, the
temporal resolution of EEG is high and is in the order of mil-
liseconds. This makes EEG an appropriate tool to capture fast
and dynamically changing brainwave patterns in complex cog-
nitive tasks. EEG signals have been used to detect changes in
mental workload on computer-based tasks [8]–[10]. However,
most studies typically use costly EEG systems that are wired
and bulky, which limits the mental workload assessment in real-
world applications. Developments in brain–computer interfaces
targeting real-life applications include wireless EEG acquisi-
tion systems that a person can easily wear while performing
everyday activities.

The use of wireless acquisition systems to assess mental
workload can enable novel applications of mental workload
measurement. This development supports exploring the feasi-
bility of wireless acquisition devices in mental workload as-
sessment [11]–[14]. For example, Anderson et al. [11] used a
wireless EEG device to assess cognitive workload involved in
processing information presented visually in data plots. The au-
thors used an Emotiv EPOC EEG headset, which is the same
system that we used in this study. They used frontal-centered
Gaussian distribution and constant weighting of signal channels
and calculated power changes in both alpha and theta frequency
bands for trials and baseline epochs. Their results showed sig-
nificant differences in cognitive load levels. However, the plot
interpretation task employed was not well characterized with
respect to the expected cognitive demands. Knoll et al. [14]
also studied the feasibility of using the Emotiv EPOC device
in assessing mental workload. The study showed significant
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correlation between task difficulty levels and the spectral pow-
ers of theta, alpha, beta, and gamma frequency band signals in
two frontal channels (F3 and F4). However, the employed task
used in their study was not well characterized with respect to
the relationship between the task difficulty levels and memory
workload.

The n-back task has been widely used to investigate mental
workload, in particular working memory load [15]–[19]. Work-
ing memory tasks require temporary storage and processing of
information items. Specifically, n-back task is a working mem-
ory updating task. This kind of task reflects general working
memory processes (keeping available a set of representations
over short periods of time and retrieving them accurately) and
updating working memory processes (substituting old working-
memory contents by new ones) [20]. In the n-back task, a subject
identifies whether the current stimulus (generally letters or num-
bers) matches a stimulus presented n trials before the current
one (n is usually 1, 2, or 3). The load factor n can be adjusted to
set the difficulty level of the task and control working memory
load conditions without affecting visual input and frequency and
type of motor output [15]. This elegant property has made the
n-back task a widely employed tool in investigations of mental
workload and cognitive performance under various conditions.

A review of research on n-back tasks and their neural corre-
lates is provided in [21]. In their paper, Owen et al., presented
a metaanalysis of 24 studies that employed the n-back task and
showed similarities and differences in brain regions involved in
working memory. Six frontal and parietal cortical regions were
found consistently activated based on the quantitative meta-
analysis of brain neurological data. A number of studies have
investigated memory load using scalp EEG recordings [9], [22]–
[26]. Gevins et al. [22] reported that increased memory load was
associated with increased theta band power in the frontal mid-
line area. Similar observations were also reported in [23] and
[25]. In addition to the theta-band activity changes, most studies
also observed alpha band activity changes. Gevins et al. [22] re-
ported that alpha signal power decreased with increased working
memory load in the parieto-occipital midline areas. The same
finding was also reported in [25], where the task used included
the n-back task.

Several aforementioned studies that investigated classifica-
tion of EEG signals distinguished discrete levels of working
memory load [22], [24], [26]. Gevins et al. [22] achieved an
accuracy of higher than 80% in binary classification of data seg-
ments associated with moderate load (2-back) versus high-(3-
back) or low-(1-back) memory load data segments using a neural
network-based classifier. However, that study had a few limita-
tions: 1) a Laplacian spatial enhancement requires accurate per-
subject head measurements to filter noise from the signal; 2) a
manual inspection step was used to remove data segments with
artifacts, which highly depended on expertise in reading EEG
signals; and 3) the random-hold-out cross validation might over-
estimate the classification accuracy. Grimes et al. [24] presented
a classification framework without such steps. The framework
included EEG feature extraction using signal powers from the 4–
13 Hz band in 1-Hz intervals, from 13–31 Hz in 2-Hz intervals,
and from 32–50 Hz in 4-Hz intervals, an information gain-based

feature selection method, a Naive Bayes-based classification
model, and a block-based cross-validation step. The four level
(0-, 1-, 2-, 3-back) classification accuracy was 88% averaged
over the eight subjects. Although high classification accuracies
were achieved, the model was trained on each individual subject
separately. The cross-subject classification performance was re-
ported poor due to considerable individual differences in EEG
features. Brouwer et al. [26] used signal spectral power and
event-related potentials (ERP) as EEG features, and a support
vector machine (SVM) classifier was trained to predict memory
load. The reported accuracies were around 80%, 75%, and 65%
for 0- versus 2-back, 1- versus 2-back, and 0- versus 1-back
condition, respectively. Their study also applied classification
to each individual participant as memory load may affect EEG
differently between individuals. However, the employed ERP
feature can be impractical as it requires averaging across many
trials and the stimuli and their timing may not be available in
many real-life work situations.

The ability of EEG to differentiate between the n-back task
levels was established in prior work with wired and clinical-
grade EEG systems (e.g., [24], [26], [27]). Our work aims to
establish the feasibility of using signals collected from a low-
cost wireless acquisition system to assess memory workload
on the n-back task. We performed a statistical and data mining
analysis of wirelessly collected EEG signals for memory work-
load assessment. To tackle the problem of high interindividual
variability in EEG-derived feature values, we used a person-
alized standardization method to recalculate features of differ-
ent subjects into the same scale and to remove outliers. We
performed feature selection from a large number of signal fea-
tures to discover the most informative features for mental work-
load assessment. An information-theory-based feature selection
technique was employed to obtain an optimal subset of the fea-
tures that show strong discriminative power for different mem-
ory workload levels [28]. The SVM algorithm was employed
to investigate the discriminability of brainwave patterns at dif-
ferent memory workload levels in an N -fold cross-validation
procedure. The statistical behavior analysis also provided use-
ful complementary information to demonstrate the usefulness of
the wireless EEG signals for mental workload assessment. The
findings of this work bring a promising perspective on apply-
ing inexpensive wireless acquisition systems to assess mental
workload in real-world applications.

The rest of this paper is organized as follows. In Section II,
the experimental methods are presented. Section III presents
the results for behavioral analysis, power spectral analysis,
and classification analysis. Finally, the discussion appears in
Section IV.

II. METHOD

A. Participants

Fourteen participants (six females) were recruited from Rut-
gers University student body to perform n-back computer task
in the lab. Due to incompatibility of the Emotiv headset with
two participants’ shape of head (e.g., a participant’s head was
too small to fit the headset), the data could not be collected. In
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Fig. 1. Fourteen-channel Emotiv EPOC headset in the experimental setup.

Fig. 2. Location map of the 14 signal electrodes of the Emotiv headset.

three more cases, the data collected were corrupted. Hence, we
present data from nine participants (four females).

B. Apparatus

As shown in Fig. 1, we employed a wireless brain signal ac-
quisition system manufactured by Emotiv. This device uses a
14-channel (plus references) high-resolution (2048 samples/s,
downsampled internally to 128 samples/s) signal acquisition
wireless neuro-headset. Fig. 2 shows the 14 recording posi-
tions, which are simplified based on the international 10–20
EEG format. The user task was presented by a program written
in python and running on a PC under the Windows XP operating
system. The program was based on a version of open source soft-
ware “Dual N -Back Game” (available at: http://brainworkshop.
sourceforge.net). We modified the software so as to support col-
lection of the required data, including timing of trials, accuracy
and timing of users responses. The Emotiv system is designed
to wirelessly capture EEG signals. However, in practice, the ac-
quired signals may be a mixture of electrical signals due to brain
activity (EEG), eye movement (EOG), and other signals related
to, for example, facial muscle activity. The latter two types of
signals may be captured by the Emotiv system due to several
prefrontal locations of electrodes (AF3 and AF4). Throughout
the paper, we will use the term EEG signals, to refer to the
signals acquired by the Emotiv system keeping in mind that
sources of these signals may not be limited to brain activity.

Fig. 3. n-back task principle with letter stimuli.

C. Independent and Dependent Variables

The independent variables included the level of n-back task
(0–3) and the two types of stimuli (letters and position). The de-
pendent variables included response accuracy (RA) and reaction
time (RT) for the n-back task. The RTs were further divided into
RT for correct responses and RT for incorrect responses. The
dependent variables also included the power spectral data and
other features extracted from EEG signals, and the classification
performance measures.

D. User Task

Participants performed the n-back task which is well re-
searched in cognitive psychology and can characterize clearly
differentiated workload levels related to a person’s working
memory [21], [22], [24]. In the n-back task, participants were
presented with a series of stimuli (letters or shapes), one at
a time. At each stimulus presentation (trial), a participant needed
to respond whether or not the current stimulus was the same as
the one he/she saw “n” trials ago. Thus, a participant needed
to store a sequence of previous “n” stimuli in his/her memory,
match it with the current stimulus, and update the memorized
sequence with the new stimulus. In this study, each participant
performed two types of n-back tasks using two different set of
stimuli. The first set consisted of eight letters, randomly chosen
from the set of English consonants. Fig. 3 shows an example of
the n-back task with letter stimuli. The second set consisted
of nine spatial locations contained within a 3 × 3 presenta-
tion square (visually similar to tic-tac-toe game) as shown in
Fig. 4.

E. Procedure

The n-back experiment lasted about 1 to 1.5 h. Each par-
ticipant performed 35 sessions of n-back experiments with
four difficulty levels. Each session consisted of 30 3-s trials of
n-back tasks at the same difficulty level. Participants responded
by pressing a “yes” key, to indicate that the current stimulus
was the same as the one “n” trials ago, or “no” key, to indicate
that it was different. Each participant first performed 17 practice
sessions (with letter and spatial pattern stimuli) and then com-
pleted 18 testing sessions: 12 were the letter tasks and six were
the spatial tasks. A standard cognitive test of memory span was
administered after a participant completed all tasks.
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Fig. 4. n-back task with spatial pattern stimuli.

F. Experimental Design and Data Analysis

The experimental design was a 4 × 2 within-subject design
with two factors, n-back levels (0 through 3) and types of stim-
ulus (letters or position). In the data analysis step, we removed
trials, in which participants responded by mistakenly pressing a
key more than once, as in such cases, we cannot establish which
response should be considered.

1) Artifact Removal: Brain signals often contain significant
artifacts that lead to major problems in signal analysis, when
the activity due to artifacts has a higher amplitude than the
one due to neural sources. The common sources of artifacts in-
clude eye movements, muscle contractions, and electric devices
interference [29]. Independent component analysis (ICA) has
been successfully applied for artifacts removal in many studies.
The basic idea is to decompose the brain data into independent
components, determine the artifacted components using pattern
and source localization analysis, and reconstruct the brain sig-
nals by excluding those artifacted components. However, link-
ing components to artifact sources (e.g., eye blinking, muscle
movements) remains largely user-dependent. We employed an
automatic ICA-based algorithm ADJUST [30] for signal artifact
removal. ADJUST applies stereotyped artifact-specific spatial
and temporal features to identify independent components of
artifacts automatically. These artifacts can be removed from the
data without affecting the activity of neural sources [30]. The
data analysis then uses the cleaned data after artifact removal.

2) Signal Feature Extraction: Four groups of feature extrac-
tion techniques were employed to capture signal characteristics
that may be relevant to assess memory workload: signal power,
statistical, morphological, and time–frequency features. For a
data epoch with n channels, we first extracted features from
signals at each channel and then concatenated the features of all
n channels to construct the feature vector of the data epoch. Let
X = {x1 , x2 , . . . , xm} denote a single-channel signal with m
points. The feature extraction of four groups of signal features
are described as follows.

a) Signal power features: Adopting the signal features used
in [24], we computed signal power for each channel in every
nonoverlapping 2-Hz intervals from 4–40 Hz. The 18 power

features provide finer signal power spectrum information than
the commonly used brain signal frequency bands (theta, alpha,
beta, and gamma bands).

b) Statistical features: The mean, variance, skewness, and
kurtosis were used to characterize the distribution of signal
amplitudes.

c) Morphological features: Three morphological features
were extracted to describe morphological characteristics of a
single-channel signal as in [31] and [32]. The morphological
features are as follows:

i) Curve length, also known as “line length” [33], is often
defined by sum of distances between successive points.
Considering that EEG data may not have the exact same
length, we normalized the curve length by taking into
account the number of data points. Thus, the curve length
employed in this study is calculated by

1
m − 1

m−1∑

i=1

|xi+1 − xi |. (1)

Since curve length increases as the signal magnitude
or frequency increases, it is a measure of amplitude-
frequency variations of a signal. It has been used in many
brain signal studies, such as epileptic seizure detection
[34], and stimulation responses of the brain [35].

ii) Number of peaks: It is a measure of the overall frequency
of a signal. The number of peaks in a signal X can be
calculated by

1
2

m−2∑

i=1

max{0, sgn(xi+2 − xi+1) − sgn(xi+1 − xi)}.

(2)
iii) Average nonlinear energy: The nonlinear energy [36] is

sensitive to spectral changes. Thus, it is useful to capture
spectral information of a signal [37]. The average non-
linear energy of the single-channel signal X is computed
as

1
m − 2

m−1∑

i=2

x2
i − xi−1xi+1 . (3)

The four statistical features and three morphological fea-
tures were extracted from the ICA-cleaned EEG signals at four
well-known frequency bands theta (4–8 Hz), alpha (8–13 Hz),
beta (13–25 Hz), and low gamma (25–40 Hz). In addition, we
performed feature analysis for concatenated EEG signals un-
der three conditions: correct response, before-keystroke, after-
keystroke. The abrupt epoch edge changes do not affect the
four statistics of EEG amplitude distributions, while they may
slightly affect the morphological feature values. To eliminate
the edge artifacts caused by concatenation, we did not include
the trial edge points when calculating the three morphological
features in formula (1), (2), and (3), respectively.

d) Time–frequency features: Wavelet transform is a powerful
tool to perform time–frequency analysis of signals [38]. Among
different wavelet families, we employed Daubechies wavelet as
it is frequently used in physiological signal analysis due to its
orthogonality property and efficient filter implementation [39].
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TABLE I
FREQUENCY RANGES AND THE CORRESPONDING BRAIN SIGNAL FREQUENCY

BANDS OBTAINED BY THE FOUR-LEVEL DISCRETE WAVELET DECOMPOSITION

Decomposed Level Frequency Range (Hz) Approximate Band

D1 32–64 Gamma
D2 16–32 Beta
D3 8–16 Alpha
D4 4–8 Theta
A4 0–4 Delta

A four-level discrete wavelet transform (DWT) decomposition
was applied to the collected signals with the sampling rate of
128 Hz. Table I lists the decomposed signals A4, D4, D3, D2,
D1, which roughly corresponded to the brain signal frequency
bands delta, theta, alpha, beta, and gamma, respectively.

After the four-level DWT decomposition, a set of wavelet
coefficients can be obtained for each decomposed signals. To
further decrease feature dimensionality, we employed a measure
of wavelet coefficients called wavelet entropy (WE), which in-
dicates the degree of multifrequency signal order/disorder in the
signals [40]. To obtain WE, the first step is to calculate relative
wavelet energy for each decomposition level as follows:

pj =
Ej

Etot
=

Ej∑n
j=1 Ej

(4)

where j is the resolution level, and n is the number of decom-
posed signals (n = 5 in this study). Ej is the wavelet power, the
sum of squared wavelet coefficients, of decomposed signal j.
The relative wavelet energy pj can be considered as the power
density of the decomposed signal level j. Similar to Shannon
entropy [41] for analyzing and comparing probability distribu-
tions, the WE is defined by

WE = −
n∑

j=1

pj × ln(pj ). (5)

The WE offers a suitable tool for characterizing the or-
der/disorder of signals powers in the five brain signal frequency
bands (delta, theta, alpha, beta and gamma) during the n-back
task.

3) Personalized Feature Standardization: A challenge for
many studies that use EEG signals is high interindividual vari-
ability. Correspondingly, signal features can vary significantly
across subjects. Therefore, it is often difficult to build robust
models to estimate mental workload levels across subjects. In
addition, due to various artifacts existing in the collected sig-
nals, there are inevitable outliers in the extracted signal fea-
tures. These outlier feature values can distort model training
and deteriorate model generalization performance. To tackle
these problems, we applied a personalized feature standardiza-
tion approach [42] to convert the extracted feature values of the
subjects into the same scale.

The upper and lower limits of the distribution of a feature
are determined as typically done for generating a box plot of a
distribution [43]. The lower limit Vl = max(minimum feature
value, lower quartile 1.5 × interquartile range), and the upper

limit Vu= min(maximum feature value, upper quartile + 1.5
× interquartile range). The upper and the lower limits define
an interval containing most of the extracted feature values of a
subject. The feature values outside of the interval are considered
to be outliers. The absolute feature values are then normalized
with respect to the individual interval defined by the upper and
lower limits. Assume the raw feature value is Fraw; then, the
scaled feature value Fscaled is obtained by

Fscaled =
Fraw − Vl

Vu − Vl
. (6)

The scaled feature value is a percentage indicating the relative
position of the feature value in the feature value range [Vl , Vu ].
Outliers are mapped to 0 or 1 depending on whether they are
smaller than the lower limit or greater than the upper limit,
respectively. This way, each feature of a subject was standard-
ized into the range of [0, 1] by a personalized range of feature
values. The personalized feature scaling reduces interindivid-
ual variability that may be caused by signal drift and baseline
changes. It can also eliminate feature outliers associated with
artifacts caused by body or muscle movements.

4) Feature Selection: For each signal channel, we extracted
47 features: 18 signal power features from 18 2-Hz frequency
intervals, four statistical features, three morphological features
of the filtered signal in four frequency bands (4–8, 8–13, 13–
25, and 25–40 Hz), and WE. The total number of features of a
14-channel data epoch is 47 × 14 = 658. The high-dimensional
feature space can make the classification process more complex
and less reliable due to feature redundancy. It also imposes a
challenge to investigate the relationship between various fea-
tures and memory load levels. Thus, a feature selection step is
necessary to select the most informative features to assess mem-
ory workload levels. To achieve a reliable feature selection,
we employed the minimum redundancy maximum relevance
(mRMR) approach [28]. The basic idea of mRMR is to select
the most relevant features with respect to class labels while min-
imizing redundancy amongst the selected features. The mRMR
algorithm uses mutual information as the distance measure to
compute feature-to-feature and feature-to-class-label nonlinear
similarities. For two features X and Y , p(X) and p(Y ) are
marginal probability functions, and p(X,Y ) is the connected
probability distribution while I(X,Y ) is the amount of mutual
information of a and b:

I(X;Y ) =
∑

y∈Y

∑

x∈X

p(x, y) log
(

p(x, y)
p(x) p(y)

)
. (7)

The mRMR method aims to minimize redundancy (Rd) while
maximizing relevance (Re) among the features. An optimal sub-
set of features can be obtained by minimizing the following
objective function:

φ(Rd,Re) =
1

|S|2
∑

i,j∈S

I(i, j) − 1
|S|

∑

i∈S

I(h, j) (8)

where S is the set of features, h is the vector of target class
labels, and I(i, j) is the mutual information between features i
and j.
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5) Classification Method: With collected signals from four
mental workload levels (0-, 1-, 2-, 3-back), SVM was employed
to investigate the separability between different mental work-
load levels. For two mental workload levels A and B, each sam-
ple is represented by a vector of features selected by mRMR.
Assume there are n data samples in total, denoted by denoted
by x1 , x2 , . . . , xn . In addition, let l denote the class label with
l = 1 for workload level A and l = −1 for workload level B. An
SVM classifier’s goal is to find a hyperplane that simultaneously
minimizes the empirical classification error and maximizes the
margin (model generalization) to separate the samples of the
two classes. Since the standard SVM classifiers usually require
a large amount of computation time for training, the proximal
SVM (PSVM) algorithm [44] was introduced as a fast and ro-
bust alternative to the standard SVM formulation. We employed
a balanced PSVM model which weighs the classes depending
on the number of samples in each class and balances them in
the training error term, as the sample size of each memory load
level can be very unbalanced.

6) Training and Evaluation: The N -fold cross-validation is
an attractive model evaluation method when the sample size is
small. It is capable of providing an almost unbiased estimate of
the generalization ability of a classification model [45]. For the
nine subjects, the total number of data samples (sessions) for 0-,
1-, 2-, and 3-back are 17, 35, 63, and 63, respectively. To explore
the separability of different workload levels, we categorized the
memory workload levels into ten comparison groups. They are
0- versus 1-, 2-, 3-back, 1- versus 2-, 3-back, 1-, 2- versus 3-
back, 0-, 1- versus 2-, 3-back, 0- versus 1-back, 0- versus 2-back,
0- versus 3-back, 1- versus 2-back, 1- versus 3-back, and 2- ver-
sus 3-back. For each comparison group, we employed a tenfold
cross-validation procedure to train and evaluate the PSVM clas-
sifier. In particular, for each comparison of two memory load
levels, we divided the data samples into ten nonoverlap sub-
sets. Each time we left one subset out and performed feature
selection and PSVM model training using the remaining nine
subsets. The samples in the left-out subset were used to evaluate
the performance of the trained PSVM classifier. All data sam-
ples were tested once after repeating this procedure for all ten
subsets. Sensitivity and specificity were used to evaluate binary
classification performance of each pair of compared workload
levels. Given two workload levels A and B, the sensitivity and
specificity can be defined as follows:

sensitivity =
# correctly classified level A samples

Total number of level A samples
(9)

specificity =
# correctly classified level B samples

Total number of level B samples
. (10)

The average of sensitivity and specificity was employed to
evaluate the classification performance of the two memory load
level pairs in the n-back task.

TABLE II
MEAN REACTION TIMES AND ACCURACY FOR THE THREE LEVELS OF n-BACK

TASK

n -Back level Reaction time (ms) Response accuracy (%)

1-back 667 94
2-back 854 86
3-back 905 79

III. RESULTS

A. Behavioral Results

Results are presented using a priori significance levels of
α = 0.05, and for trends, 0.05 < α ≤ 0.1. We first performed
3 × 2 analysis of variance with n-back and stimulus type as in-
dependent factors, and RT and RA as dependent variables. The
analysis was performed for n-back levels 1, 2, and 3 because RTs
could not be obtained for n-back level 0. There were no signif-
icant effects of stimulus type in any of the performed analyses.
Average RTs differed significantly between the three n-back
levels for all responses (F (2, 149) = 7.3, p = 0.001) as well as
for only correct responses (F (2, 149) = 6.93, p = 0.001). Ex-
amining post-hoc tests (Fisher’s least significant difference),
we found significant differences in the expected direction (i.e.,
shortest RT for 1-back and longest for 3-back; see Table II) be-
tween 1- versus 2-back and 1- versus 3-back. The differences in
RTs became larger after we removed variability due to individual
participants (for all responses F (2, 149) = 23.54, p < 0.001).
Posthoc tests showed the differences between 1- versus 2- and
1- versus 3-back (p < 0.001), and the difference between 2-
and 3-back indicated a trend (p = 0.072). The accuracy also
differed significantly between the three levels of the n-back
task (F (2, 149) = 19.4, p < 0.001 and F (2, 149) = 39.54, p <
0.001 after variability due to individual participants was re-
moved). Posthoc tests showed significant difference in accuracy
in the expected direction (i.e., most accurate for 1-back and least
for 3-back; see Table II) between all three task levels (for all
p ≤ 0.001). These results confirmed the expected mental work-
load differences between the difficulty levels of the n-back task
and thus provided a validation of the n-back task.

B. Signal Power Spectral Analysis

We computed power spectrum of each 3-s trial of each sub-
ject at the four workload levels. For each pair of n-back levels, a
two-sample t-test with a significant level of 0.05 was employed
to determine whether the signal powers of the 3-s trials of the
two n-back levels were significantly different at each channel
and at each 1-Hz interval from 0 to 40 Hz. We made 9 subjects×
4 frequencies × 14 channels × 6 comparison pairs, that is, 3024
hypothesis tests. To compensate for a large number of pairwise
comparisons, we adopted a false discovery rate (FDR) procedure
to control the alpha inflation problem [46], [47]. With a large
number of hypothesis tests, the FDR controlling procedure has
been shown effective to make a balanced control of both Type-
I and Type-II errors in neuroimaging data analysis literature
[48]. Taking into account the joint distribution of the p-values
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Fig. 5. Number of subjects (indicated by gray level) that show a significant difference in signal power under six comparison conditions [(a) 0- versus 1-back,
(b) 0- versus 2-back, (c) 0- versus 3-back, (d) 1- versus 2-back, (e) 1- versus 3-back, (f) 2- versus 3-back) using the FDR corrected p-value threshold at FDR rate
of 0.05. For each pair of n-back levels, the t-tests were performed to compare signals powers at each channel and each 1-Hz frequency interval from 0–40 Hz
for each subject. Signal power that distinguishes between 0-back and 1-back conditions was present in Delta and low Theta band (0–6 Hz) at frontal channels
AF3, AF4, F7, and F8. For 1- versus 2-back and 1- versus 3-back, more subjects showed different signal power at low gamma band (30–40 Hz) at frontal central
channels FC5 and F7 and temporal site channel T7, while the signal power differences between 2-back and 3-back were not significant for most subjects.

across channels, frequency bands, and conditions levels, the
FDR-corrected critical alpha = 6.91×10−4 given an FDR rate
of 0.05. Fig. 5 shows the number of participants that exhibited a
significant signal power difference between two workload levels
at each channel and each 1-Hz interval. The six subplots rep-
resent the results of six pairwise workload level comparisons:
0-back versus 1-back, 0-back versus 2-back, 0-back versus 3-
back, 1-back versus 2-back, 1-back versus 2-back, and 2-back
versus 3-back. As shown in the subplots (a)–(c), the signal pow-
ers that distinguish between 0- and 1-back, 0- and 2-back, and 0-
and 3-back are present mainly in 0–6 Hz (approximately delta
and low theta bands) at four frontal channels AF3, AF4, F7, and
F8. For 0- versus 2-back and 0- versus 3-back, the signal power
differences can also be observed in the alpha band (10–13 Hz) at
two occipital sites (O1 and O2) and the inferior parietal region
(P8 and P7). For 1- versus 2-back and 1- versus 3-back, the most
significant areas were presented around 32–40 Hz (low gamma
band) at left-fronto-central channel FC5, the left temporal site
T7, and the occipital site O1. Finally, for 2- versus 3-back, the
significant areas were considerably weaker than other compar-
ison groups. The signal power differences between 2-back and
3-back were not significant for most subjects.

Fig. 6 shows the grand average of the power spectrum over the
nine subjects for the four memory workload levels at two frontal
locations (FC5, F3) and two back locations (O1, P8). The power

spectra at these channels show that alpha power decreases with
memory load, while the high beta and low gamma power (20–40
Hz) increases with memory load. In addition, theta powers of 1-,
2-, 3-back are higher than that of 0-back. Although differences
were observed in the averaged power spectrum, the signal power
spectrum varied greatly across the subjects; this is in accordance
with the findings in previous studies [24], [26]. Thus, it would be
difficult to accurately differentiate working memory load levels
only using power spectral features.

C. Classification Results

We investigated the classifiability of the collected data
on ten pairs of memory workload levels based on three
datasets: 1) using the entire EEG segments of each session;
2) using the concatenated before-keystroke (before user re-
sponse) data of each trial to represent each session; and
3) using the concatenated after-keystroke data of each trial
to represent each session. For each dataset, we performed
automatic artifacts removal, feature extraction, personalized
feature standardization, feature selection using mRMR, and
classification using PSVM. Using ten top-ranked features
selected by mRMR, Table III summarizes the classifica-
tion performance of the ten memory workload comparison
groups based on the tenfold cross-validation. The classification
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Fig. 6. Grand average of power spectra over the nine subjects for the four memory load levels at two front locations (FC5, F3) and two back locations (P7, P8).
The power spectra at these channels show that alpha power decreases with memory load, while the high beta and low gamma power (20–40 Hz) increases with
memory load. Also, theta powers of 1-, 2-, 3-back are higher than that of 0-back in the sample distribution. (a) Power spectra of channel O1. (b) Power spectra of
channel P8. (c) Power spectra of channel FC5. (d) Power spectra of channel F3.

TABLE III
CLASSIFICATION RESULTS OF WORKING MEMORY LOAD LEVELS USING PSVM AND TEN FEATURES SELECTED BY MRMR ON THREE DATASETS: 1) ENTIRE EEG
DATA IN EACH SESSION, 2) CONCATENATED BEFORE-KEYSTROKE DATA IN EACH SESSION, AND 3) CONCATENATED AFTER-KEYSTROKE DATA IN EACH SESSION

Classification Performance Using All Trials in the n -back Task

Entire Session Data Concatenated Before-Keystroke Data Concatenated After-Keystroke Data

Conditions accuracy std. accuracy std. accuracy std.

0-back versus 1-, 2-, 3-back 0.81 0.17 1.00 0.00 1.00 0.01
1-back versus 2-, 3-back 0.59 0.09 0.68 0.12 0.76 0.09
1-, 2-back versus 3-back 0.58 0.09 0.61 0.10 0.69 0.09
0-, 1-back versus 2-, 3-back 0.66 0.12 0.60 0.14 0.82 0.09
0-back versus 1-back 0.63 0.24 1.00 0.00 0.90 0.18
0-back versus 2-back 0.70 0.11 1.00 0.00 1.00 0.00
0-back versus 3-back 0.81 0.16 1.00 0.00 1.00 0.00
1-back versus 2-back 0.60 0.09 0.70 0.11 0.77 0.12
1-back versus 3-back 0.59 0.10 0.72 0.15 0.74 0.08
2-back versus 3-back 0.65 0.11 0.57 0.08 0.57 0.13
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TABLE IV
CLASSIFICATION RESULTS OF WORKING MEMORY LOAD LEVELS USING PSVM AND TEN FEATURES SELECTED BY MRMR ON THREE DATASETS THAT ONLY

INCLUDE THE TRIALS WITH CORRECT RESPONSES: 1) CONCATENATED EEG TRIALS WITH CORRECT KEYSTROKES, 2) CONCATENATED BEFORE-KEYSTROKE DATA

OF CORRECT TRIALS IN EACH SESSION, AND 3) CONCATENATED AFTER-KEYSTROKE DATA OF CORRECT TRIALS IN EACH SESSION

Classification Performance Using Only Trials with Correct Responses

Entire Session Data Concatenated Before-Keystroke Data Concatenated After-Keystroke Data

Conditions accuracy std. accuracy std. accuracy std.

0-back versus 1-, 2-, 3-back 0.80 0.11 1.00 0.00 0.98 0.03
1-back versus 2-, 3-back 0.73 0.16 0.57 0.09 0.84 0.07
1-, 2-back versus 3-back 0.66 0.07 0.53 0.08 0.71 0.10
0-, 1-back versus 2-, 3-back 0.74 0.10 0.61 0.05 0.88 0.04
0-back versus 1-back 0.65 0.19 1.00 0.00 0.78 0.05
0-back versus 2-back 0.71 0.16 0.99 0.03 1.00 0.00
0-back versus 3-back 0.82 0.15 1.00 0.00 1.00 0.00
1-back versus 2-back 0.71 0.09 0.61 0.11 0.80 0.07
1-back versus 3-back 0.71 0.15 0.51 0.11 0.84 0.08
2-back versus 3-back 0.67 0.12 0.60 0.13 0.68 0.07

performances using the before-keystroke and after-keystroke
data were mostly better than those using the entire-session
data. The classification results using before-keystroke and after-
keystroke data both show very strong discrimination between
0-back and 1-, 2-, 3-backs with an accuracy of 100%. The re-
sults indicate that the EEG patterns with the lowest memory
workload (0-back) were different from the patterns with active
memory workload (1, 2, or 3-back). The best discrimination
performance between 1- and 2-back was achieved using the
after-keystroke data with an accuracy of 77%; the best classi-
fication performance between 1- and 3-back was also achieved
using the after-keystroke data with an accuracy of 74%; and the
best classification accuracy between 2- and 3-back was about
65%. The decrease of the classification accuracies from 1- ver-
sus 2-back (77%) and 1- versus 3-back (74%) to 2- versus 3-
back (65%) may indicate that the brainwave patterns of the high
workload levels (2- and 3-back) are more complicated and thus
harder to capture by the current classification model. Another
reason might be the patterns of high workload levels have higher
inter-individual variability across subjects. Thus, it is more diffi-
cult to discriminate the patterns by a single classification model
across the subjects. A personalized pattern recognition tech-
niques could be useful to improve the assessment accuracy for
high workload levels.

In addition, we performed the classification on the concate-
nated datasets only using the trials with correct responses. We
studied signals from correct trials because we observed that
the subjects had varying accuracies in the n-back tasks and ex-
hibited different behaviors when they made incorrect keystroke
actions, especially during the 2-back and 3-back tasks. Some
subjects might give up or respond randomly for several trials,
refresh their memory, and start over again to establish a new
memory queue to catch up the pace of the ongoing n-back
sequences. Thus, the brainwave patterns in the trials with in-
correct responses may be influenced by complicated cognitive
activities other than working memory. Table IV summarizes
the classification results using the concatenated data from trials
with correct responses. Comparing with the results using both

correct and incorrect trials, the classification accuracies all in-
creased: the accuracy for 1-, versus 2-, 3-back increased to 84%
from 76%; for 1- versus 3-back to 84% from 74%; and for 2-
versus 3-back to 68% from 65% with a reduced standard error.
Such performance improvements indicate that eliminating the
distracted cognitive activities evoked by response errors can be
useful to capture brainwave patterns associated with working
memory load.

To show the effectiveness of the proposed feature set, Ta-
ble V presents the classification results using only the power
spectral features as in [22], [24], and [26]. The power spec-
tral features used in this study were the EEG signal powers in
every nonoverlap 2-Hz intervals from 4 to 40 Hz. The overall
classification performances were considerably lower than those
using the proposed EEG feature set including statistical features,
pattern morphological features, and time–frequency features in
addition to the power spectral features. In addition, to show
the discrimination between the four memory load levels, Fig. 7
shows the plots of the samples of 0- versus 1-, 1- versus 2-,
and 2- versus 3-back using the three highest ranked EEG fea-
tures selected by the mRMR approach. In particular, feature 1
is the number of peaks in alpha band (8–13 Hz) of EEG channel
P7; feature 2 is the WE of EEG channel FC6; and feature 3 is
the signal power of the 32–34 Hz interval of EEG channel O1.
In the 3-D feature space, the samples of 0-back can be clearly
discriminated from 1-back samples, the distributions of 1-back
and 2-back samples are also largely separated though having
some overlaps, and the 2-back and 3-back samples are heavily
overlapped but still show some trends of distinction in the two
sample distributions.

IV. DISCUSSION AND CONCLUDING REMARKS

This paper has investigated the feasibility of using wire-
lessly acquired EEG signals to assess memory workload in a
well-controlled n-back task using a wireless EEG system with
14 signal channels. The behavioral measures (increased RTs
and decreased RAs) confirmed that different memory workload
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TABLE V
CLASSIFICATION RESULTS OF WORKING MEMORY LOAD LEVELS USING PSVM AND TEN FEATURES SELECTED FROM THE POWER SPECTRAL FEATURES

ON THE DATASET OF CORRECT TRIALS

Classification Performance Using Only Power Spectral Features on Data of Correct Trials

Entire Session Data Concatenated Before-Keystroke Data Concatenated After-Keystroke Data

Conditions accuracy std. accuracy std. accuracy std.

0-back versus 1-, 2-, 3-back 0.66 0.15 0.71 0.16 0.74 0.15
1-back versus 2-, 3-back 0.66 0.13 0.61 0.07 0.58 0.11
1-, 2-back versus 3-back 0.61 0.08 0.63 0.08 0.66 0.06
0-, 1-back versus 2-, 3-back 0.60 0.12 0.59 0.09 0.62 0.08
0-back versus 1-back 0.70 0.16 0.83 0.14 0.73 0.20
0-back versus 2-back 0.55 0.15 0.71 0.09 0.74 0.10
0-back versus 3-back 0.71 0.11 0.80 0.10 0.72 0.11
1-back versus 2-back 0.69 0.09 0.61 0.09 0.56 0.06
1-back versus 3-back 0.62 0.06 0.63 0.06 0.77 0.11
2-back versus 3-back 0.63 0.04 0.54 0.06 0.68 0.04

The power spectral features are signal powers in every nonoverlapping 2-Hz intervals from 4–40 Hz. The overall classification
performances were considerably lower than those using the full proposed EEG feature set including power spectral features, statistical
features, pattern morphological features, and time–frequency features.

Fig. 7. Plots of the 1-, 2-, and 3-back sessions of the nine subjects using the three highest ranked EEG features selected by the mRMR approach. In particular,
feature 1: the number of peaks in alpha band (8–13 Hz) of EEG channel P7; feature 2: the WE of EEG channel FC6; and feature 3: the signal power of channel O1
at 32–34 Hz. In the 3-D feature space, the samples of 0-back can be clearly discriminated from 1-back samples; the distributions of 1-back and 2-back samples are
also largely separated although having some overlaps; the 2-back and 3-back samples are heavily overlapped but still show some trends of distinction in sample
distribution.

levels were experienced corresponding to different n-back lev-
els. Different memory workload evoked associated EEG sig-
nal patterns that made it possible to classify the corresponding
memory load levels. The change in signal power in the theta
band (4–8 Hz) at frontal channels was found to be significant
for distinguishing the lowest workload level (0-back) from the
higher workload levels. The change in alpha band (9–13 Hz)
and the low gamma band (30–40 Hz) were found to be useful
for distinguishing memory workload levels between 1-, 2-, and
3-back levels. In this study, we presented a computational EEG
data analysis framework, which integrated recent advances in
automated artifact removal, four sets of feature extraction tech-
niques, a personalized feature scaling approach, an information-
theory-based feature selection, and a balanced PSVM classifica-
tion model. The proposed data analysis methodology achieved
high classification accuracies for the four memory load levels.
The accuracies of two-class classification of the lowest level
(0-back) and all the higher memory load levels (1-, 2-, 3-back)
were close to 100%, and the accuracies between 1-back and
2- or 3-back were all greater than 80%. Compared with other

recent studies, such as [24] and [26], that performed in-subject
classification, the classifications presented in this paper were
crosstask (letter and position) and cross-subject. In this study,
we observed that the averaged power spectra over the nine sub-
jects showed the trends such that with the increased memory
load, the alpha power decreased and the theta power increased.
The high beta and low gamma (20–40 Hz) power increased
in front locations (such as FC5, F3) and back locations (such
as P7, P8) with increased memory load. However, similarly to
previous studies [24], [26], there were high variations of power
spectra between memory load levels among subjects. Some stud-
ies employed event related synchronization/de-synchronization
(ERS/ERD) as EEG features in the n-back task [49], but only
statistical significance testing was performed rather than a clas-
sification study. In this study, we also tried ERS/ERD features,
but did not get better classification performance. The useful-
ness of these features may need further investigations in future
work.

In this study, we showed that the performance of classification
which used the data from correct trials only was considerably
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improved compared to classification which used the data that
include incorrect trials. The performance improvement may be
due to the patterns of memory load being more prominent in
the trials with correct responses than in those with incorrect
responses. The data from incorrect trials may be contaminated
by complicated cognitive activities associated with response
errors. We also found that making a distinction between the
before-keystroke and after-keystroke data can be useful in fur-
ther improvement of classification performance of the memory
load levels. In particular, using the after-keystroke dataset we
achieved the best classification performance. Due to the se-
quential property of the n-back task, once a subject completes
an action (keystroke), he/she will actively prepare for the next
cycle by refreshing the current items in working memory, stor-
ing a new stimuli (currently observed) into the memory, thus
reinforcing updates to working memory. When the next stim-
uli appears, the subject will compare the stimuli with the ones
in the memory, and perform an action accordingly. From this
perspective, the working memory activity may be more dom-
inant in the time period between keystroke and a new-stimuli
onset than between the stimuli onset and the keystroke; in the
before-keystroke period, the brainwave patterns can be more
complicated due to the patterns evoked by a new visual stimuli,
the stimuli matching in memory, and the action activity. Our
experimental results showed that the after-keystroke period is
often twice as long or longer than the before-keystroke period in
a trial. For the 3 s trails, the averaged before-keystroke periods
were 667 ms, 854 ms, and 905 ms long for the 1-back, 2-back,
and 3-back trials, respectively. This observation indicates that
the after-keystroke period takes a major portion of a trial with
working memory as the dominant brain activity. This plausibly
explains why the best classification performance was achieved
using the after-keystroke dataset.

In summary, the wirelessly collected EEG signals appear to
be useful in measuring brain activity changes associated with
different working memory levels. The outcome of this study
suggests that wireless acquisition systems are promising in
monitoring and assessment of mental workload. The wireless
acquisition systems offer an excellent opportunity to develop
new BCI technologies for mental workload assessment in many
real-world applications, as such systems do not require dealing
with cables and allow a convenient and portable data collection.
Example application domains where such a low-cost workload
assessment system would be useful, include interactive informa-
tion retrieval systems [3] and online learning environments [27].
In the latter domain, Gerjets et al. [27] have recently demon-
strated a feasibility of cross-task classification developed from
data collected in well-controlled working memory tasks (in-
cluding n-back task) and applied to classification of realistic
learning tasks. We plan to use a similar approach and perform
cross-task classification between n-back tasks and information
retrieval tasks. Although our work is based on the n-back task,
the developed method is a systematic computational analysis
framework that is purely data-driven from raw data to deci-
sions. Such computational framework can be useful in many
other applications that involve pattern recognition or abnormal-
ity detection in multivariate EEG signals or brainwave signals

which show high interindividual variability. This study can also
be further expanded to develop a personalized online monitor-
ing and pattern recognition framework that enables assessment
of mental workload in real working environments.
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and E. Başar, “Wavelet entropy: A new tool for analysis of short duration
brain electrical signals,” J. Neurosci. Methods, vol. 105, no. 1, pp. 65–75,
2001.

[41] C. Shannon, “A mathematical theory of communication,” Bell Syst. Tech.
J., vol. 27, pp. 379–423, 623–656, 1948.

[42] G. Buscher, A. Dengel, R. Biedert, and L. V. Elst, “Attentive documents:
Eye tracking as implicit feedback for information retrieval and beyond,”
ACM Trans. Interactive Intell. Syst., vol. 1, no. 2, pp. 9:1–9:30, 2012.

[43] R. Wilcox, Introduction to Robust Estimation and Hypothesis Testing, 2nd
ed. New York, NY, USA: Academic, 2005.

[44] O. Mangasarian and E. Wild, “Proximal support vector machine classi-
fiers,” in Proc. Knowl. Discovery Data Mining, 2001, pp. 77–86.

[45] M. Stone, “Cross-validatory choice and assessment of statistical predic-
tions,” J. Roy. Statist. Soc., Ser. B (Statist. Methodol.), vol. 36, no. 2,
pp. 111–147, 1974.

[46] Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate: A
practical and powerful approach to multiple testing,” J. Roy. Statist. Soc.
Ser. B, vol. 57, pp. 289–300, 1995.

[47] Y. Benjamini and Y. Hochberg, “The control of the false discovery
rate in multiple testing under dependency,” Ann. Statist., vol. 29, no. 4,
pp. 1165–1188, 2001.

[48] C. R. Genovese, N. A. Lazar, and T. Nichols, “Thresholding of statis-
tical maps in functional neuroimaging using the false discovery rate,”
Neuroimage, vol. 15, no. 4, pp. 870–878, 2002.
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