
Physics in Medicine and Biology

Respiratory trace feature analysis for the
prediction of respiratory-gated PET
quantification

Shouyi Wang1,2, Stephen R Bowen3,4,
W Art Chaovalitwongse1,2, George A Sandison4,
Thomas J Grabowski2,3 and Paul E Kinahan3

1 Department of Industrial and Systems Engineering, 3900 Stevens Way, Seattle,
WA 98195, USA
2 Integrated Brain Imaging Center, 1959 NE Pacific St, Seattle, WA 98195, USA
3 Department of Radiology, 1959 NE Pacific St, Seattle, WA 98195, USA
4 Department of Radiation Oncology, 1959 NE Pacific St, Seattle, WA 98195, USA

E-mail: srbowen@uw.edu

Abstract
The benefits of respiratory gating in quantitative PET/CT vary tremendously
between individual patients. Respiratory pattern is among many patient-specific
characteristics that are thought to play an important role in gating-induced
imaging improvements. However, the quantitative relationship between patient-
specific characteristics of respiratory pattern and improvements in quantitative
accuracy from respiratory-gated PET/CT has not been well established. If
such a relationship could be estimated, then patient-specific respiratory patterns
could be used to prospectively select appropriate motion compensation during
image acquisition on a per-patient basis. This study was undertaken to develop
a novel statistical model that predicts quantitative changes in PET/CT imaging
due to respiratory gating. Free-breathing static FDG-PET images without
gating and respiratory-gated FDG-PET images were collected from 22 lung
and liver cancer patients on a PET/CT scanner. PET imaging quality was
quantified with peak standardized uptake value (SUVpeak) over lesions of
interest. Relative differences in SUVpeak between static and gated PET images
were calculated to indicate quantitative imaging changes due to gating. A
comprehensive multidimensional extraction of the morphological and statistical
characteristics of respiratory patterns was conducted, resulting in 16 features
that characterize representative patterns of a single respiratory trace. The six
most informative features were subsequently extracted using a stepwise feature
selection approach. The multiple-regression model was trained and tested
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based on a leave-one-subject-out cross-validation. The predicted quantitative
improvements in PET imaging achieved an accuracy higher than 90% using a
criterion with a dynamic error-tolerance range for SUVpeak values. The results of
this study suggest that our prediction framework could be applied to determine
which patients would likely benefit from respiratory motion compensation
when clinicians quantitatively assess PET/CT for therapy target definition and
response assessment.

Keywords: patient classification, respiratory motion, PET/CT, respiratory
gating

1. Introduction

Combined positron emission tomography (PET) and computed tomography (CT) imaging
has gained prominence in detection and staging of abdominothoracic cancer patients due to
its strong association to clinical outcome (Imamura et al 2011, Vansteenkiste et al 1998).
However, the quantitative accuracy of PET/CT for defining target volumes (Bettinardi et al
2010b, Caldwell et al 2001, Senan and Ruysscher 2005) and assessing response to therapy
(Avril and Weber 2005) has been limited in part by respiratory-induced tumor motion (Nehmeh
et al 2002). Time-averaged PET/CT images acquired under free-breathing conditions, known
as static PET/CT, can artificially reduce apparent lesion uptake and increase apparent tracer-
avid lesion volumes from motion blurring (Liu et al 2009). Methods to remove this blurring
include respiratory-gated PET/CT by compensating for tumor motion (Aristophanous et al
2011, Nehmeh et al 2003).

Despite the potential for significant improvements in quantitative accuracy from
respiratory-gated PET/CT (Bettinardi et al 2010a, 2012, Guerra et al 2012), particularly
for the definition of biological targets (Aristophanous et al 2011), the gains vary tremendously
between individual patients due to numerous patient-specific factors. While respiratory-gated
PET/CT has the potential to increase contrast between tracer-avid lesions and background in
some patients, it can also lead to increased image noise levels with no contrast improvement
in other patients (Liu et al 2009). Therefore, a key question is ‘can information gained from
the respiratory traces help predict the quantitative gains from respiratory-gated PET/CT?’
These predictions could aid in deciding between various motion compensation and motion
suppression strategies prior to PET/CT acquisition (Bowen et al 2012). For example, in
patients where gating would yield only small changes in quantitative accuracy, static scans
with or without active breathing control devices may be used instead (Keall et al 2006, Wong
et al 1999). As the clinical use of medical devices for motion suppression or control is invasive,
a prediction should ideally be made prior to PET/CT acquisition on whether to gate under
free-breathing conditions.

Many types of respiratory motion prediction models exist. The majority have focused on
predicting the respiratory pattern at predefined time intervals in advance, most commonly with
auto-regressive moving average (McCall and Jeraj 2007, Ren et al 2007) or support vector
regressive techniques (Riaz et al 2009). These models have many applications in respiratory-
gated radiation therapy, which allow for the prediction of future tumor positions in order to turn
the treatment beam on/off during the appropriate gating window, but thus far have not been
applied to respiratory-gated imaging. In particular, the ability to predict changes in PET/CT
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Figure 1. The computational framework for building a prediction model for PET
quantification of imaging quality from respiratory trace features.

quantification based on respiratory motion features has not to our knowledge been reported
elsewhere.

The purpose of this study was to develop a predictive model of quantitative benefit from
respiratory-gated PET/CT that can eventually be used as a clinical decision support tool.
Specifically, a new technique was developed to extract features of respiratory patterns, and in
turn to construct a model associating these features to changes in PET imaging metrics. Such
a model requires quantitative estimates of improvements in respiratory-gated imaging relative
to free-breathing static imaging for training, but following validation it should be flexible
enough to predict imaging changes based only on respiratory pattern features acquired prior
to PET/CT acquisition.

Several quantitative PET imaging metrics have been used clinically, ranging from
maximum standardized uptake value (SUVmax) to mean SUV (SUVmean) in a region-of-
interest. In this study, PET lesion tracer avidity was quantified with peak standardized uptake
value (SUVpeak) (Wahl et al 2009), which was found to be more sensitive to quantitative
changes due to respiratory motion than SUVmean but less influenced by increased noise in
gated images than SUVmax. Relative differences in SUVpeak between free-breathing static
and respiratory-gated PET images, %�SUVpeak, were calculated across patient groups and
constructed as a function of several independent respiratory trace features. The final model
was then validated for predictive power and robustness to sample size.

2. Materials and methods

In this study, respiratory motion features were characterized by a regression model to predict
changes of a PET imaging metric between free-breathing static and respiratory-gated images,
i.e., %�SUVpeak. The predictive model was built iteratively over several steps, spanning
respiratory pattern post-processing, feature extraction and selection, model generation, and
final model validation against %�SUVpeak. Figure 1 outlines the flowchart for building the
prediction model from respiratory trace features to predict the measured differences in SUVpeak

PET metric.

2.1. Experimental design and data acquisition

Twenty-two lung and liver cancer patients underwent PET/CT examinations, during which
a time series of abdominal displacement as a respiratory motion surrogate were collected
with the Real-time Position ManagementTM (RPM) (Varian Inc., Santa Clara, CA) infrared
camera and reflective marker block system. Retrospective patient data review and analysis was
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conducted under approval from the appropriate Institutional Review Board and in compliance
with the Health Information Privacy and Portability Act.

Patients were injected with 10.0 ± 0.8 mCi (MEAN±SD)of 2-deoxy-2-[18F] fluoro-D-
glucose (FDG), a surrogate of glucose metabolism, and scanned on a Discovery STETM

PET/CT scanner (GE Healthcare, Waukesha, WI) 60 min post-injection. Two-dimensional
whole-body PET list-mode data were acquired over 7 min per bed position. Static sinograms
were generated via conventional rebinning of time-averaged list-mode data. Gated sinograms
were generated retrospectively by sorting the same list-mode data into adaptive 20% amplitude
gates determined between each set of consecutive RPM triggers, known as cycle-based
quiescent period gating (QPG) (Liu et al 2010).

No trigger rejection was enforced on the respiratory-gated sinograms. The QPG bin
utilized roughly half of all detected coincidence events and was designed to compensate
for cycle-to-cycle variation in respiratory amplitude. All static and gated images were
attenuation-corrected with helical or phase-averaged cine CT, reconstructed with ordered
subset expectation-maximization over 2 iterations and 28 subsets, filtered with a 6 mm wide
Gaussian post-filter, and sampled onto a grid of 3.65 mm × 3.65 mm × 3.27 mm voxels.

Post-acquisition and reconstruction, static and gated PET images were quantified within
a region-of-interest completely containing a single lesion to minimize the impact of individual
patients biasing the population. In the minority of cases which presented with multiple lesions,
only the lesion with highest FDG uptake was selected. The PET measure SUVpeak was defined
by the average pixel value within a 1 cm3 sphere. The SUVpeak of a given patient image was
found by moving the sphere within a user-selected bounding box encompassing entire FDG
avid lung lesion until the average voxel uptake across the sphere was maximized (Wahl et al
2009). The percentage change in SUVpeak between gated and static PET images for each
patient was recorded as the dependent variable to which the prediction model was tuned to
and compared against.

The raw respiratory traces were sampled at 30 Hz and acquired over times ranging from
15–45 min. The 22 patients displayed a tremendous amount of inter-patient and intra-patient
variability, including differing periodic and aperiodic characteristics, which is illustrated in
figure 2. In order to explain the variation seen in each patient, predictive associations were
sought out between respiratory pattern features and image metric improvement in respiratory-
gated PET/CT relative to static PET/CT. The respiratory features were extracted and tested
as independent variables for the prediction model.

2.2. Fourier spectrum analysis and signal denoising

Periodicity was a significant distinctive characteristic of respiratory trace patterns. However,
raw motion signal of respiratory traces were heavily contaminated by signal drifting and
noises, as shown in figure 3(left). In the left-upper plot of the figure, there are prominent signal
drift and other sources of noise that distorts the original signal. To remove these artifacts
from the respiratory trace signal, harmonic analysis has been widely employed to cleanse and
characterize respiratory trace patterns (Hamalainen and Kettunen 2000, Riviere et al 2001).
Specifically, peaks of the Fourier spectrum were used to determine the dominating periodic
behavior of temporal trajectory of time series signal. The Fourier spectrum of a respiratory
trace from a patient in our dataset is also shown in figure 3(middle). The dominant breathing
frequency was between 0.3–0.6 Hz. Although another dominant frequency below 0.1 Hz was
observed, the associated breathing frequency was out of a physiologically reasonable range.
Since a normal breathing frequency was generally unlikely to exceed 0.1–1 Hz, this range
was used to enforce a minimum and maximum threshold for the respiration frequency. A
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Figure 2. Example of respiratory motion patterns and the corresponding SUVpeak

percentage changes of the 22 patients. The respiratory pattern shapes vary significantly
across the patients.

Figure 3. A respiratory trace before and after Fourier transform-based signal cleansing
which only retained the signal within the frequency band of [0.1, 1]Hz, which covers
the most physiologically reasonable frequencies for respiratory motions. The plot in the
middle shows the Fourier spectrum of the respiratory traces. The ‘cleansed’ respiratory
motion traces were reconstructed by an inverse Fourier transform of the frequency
components within 0.1–1 Hz.
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Figure 4. Flowchart of the two-level feature extraction procedure. A total number of 16
features are extracted for each respiratory trace of a patient.

Fourier filter was employed to eliminate physiologically unreasonable frequency components
and reconstruct respiratory motion traces. Fourier Transform was first applied to obtain the
frequency spectrum of a respiratory motion time series. Subsequently the ‘cleansed’ respiratory
motion trace was reconstructed by an inverse Fourier transform of the frequency components
within 0.1–1 Hz, as shown in figure 3(right). This approach removes the low frequency
components (e.g., signal drifts and body movements) and high frequency components (e.g.,
electronics or sensory noises) from the raw respiratory trace, while retaining the useful range
of respiratory signal. All subsequent computational experiments of the feature extraction
technique and regression analysis in this study were based on the ‘cleansed’ respiratory traces.

2.3. Feature extraction

Characterization of respiratory trace patterns was a vital step of our approach to build
a prediction model for respiratory-gated PET imaging quantification. A two-level feature
extraction strategy was used to characterize temporal patterns of respiratory traces. Given a
respiratory trace, a set of morphological features of each signal breathing cycle were extracted.
Subsequently, the statistical and time-variation properties of the extracted morphological
features were quantified. The flowchart of the two-level feature extraction procedure is
illustrated in figure 4.

2.3.1. Feature extraction of respiratory morphology. Morphological characteristics of
breathing cycles were first analyzed. A respiratory cycle can be defined as a single cycle
of inhalation and exhalation. Since respiratory motion trajectory of inhalation and exhalation
were not necessarily symmetric, two types of periodic breathing cycles were identified: exhale–
inhale (EI) cycle and inhale–exhale (IE) cycle. The EI cycle was defined by a peak-to-peak
period, starting from one maximum inspiration to the next maximum inspiration, to complete
one respiratory cycle. The IE cycle was defined by a valley-to-valley period, starting from one
maximum expiration (exhalation) to the next maximum expiration, to complete one respiratory
cycle. Since our QPG approach only performs gating for EI cycles during a PET/CT scan
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Figure 5. The eight morphological features of an EI breathing cycle given an amplitude
gating threshold P%.

(Liu et al 2010), only EI cycle features were considered to be most influential on the efficacy
of the QPG approach. Thus in this study, only respiratory pattern features based on EI cycle
were extracted and used in our prediction model.

The respiratory gating method extracted PET image data below a certain amplitude
threshold in each breathing cycle. The ‘gated’ respiratory curve patterns of breathing cycles
in each respiratory trace were deemed to provide meaningful characteristics that may be
linked with improvements of imaging quality. Given an amplitude gating threshold P% of
the maximum amplitude during a breathing cycle, four metrics to characterize the gated
respiratory motion curve patterns were proposed. In this study, four values of the amplitude
gating threshold P% (20%, 30%, 40%, and 50%) were tested, as these values have been used
as gating thresholds for the QPG method (Liu et al 2010). As illustrated in figure 5, given a
gating threshold P%, the four pattern features were defined as follows.

• F1(P%) = h, amplitude of the cutoff curve at the amplitude threshold of P%.
• F2(P%) = w, period of the cutoff curve at the amplitude threshold of P%.
• F3(P%) = h/w, ratio between cutoff amplitude h and cutoff period w.
• F4(P%) = w/W , ratio between cutoff period and cycle duration, where W was the time

period of the breathing cycle.

In addition to the gated-curve pattern features, four additional features quantified the
morphology of entire EI cycle patterns. As shown in figure 5, the four morphological features
of an entire breathing cycle were defined as follows.

• F5 = w1/w2, ratio of expiration and inspiration time.
• F6 = H, cycle amplitude of the breathing cycle.
• F7 = w1 + w2, cycle duration of the breathing cycle.
• F8 = d/H, ratio of end-inspiration drift and cycle amplitude.

The relative timing of expiration and inspiration (F5), cycle amplitude (F6), and cycle time
period (F7) were commonly used in prior respiratory pattern analysis (Strauss-Blasche et al
2000, Tobin et al 1983, Tobin 1992). In addition, prior investigations on signal processing of
respiratory traces have revealed that end-expiration or end-inspiration displacement can also
be an important metric with which to group patients. Based on end-expiration displacement,
patients were be grouped into three broad categories: periodic breathers with reproducible
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end-expiration displacement, periodic breathers with normal distributions of end-expiration
displacement, and chaotic breathers (Liu et al 2009). However, it was still unknown whether
these patient classification schemes carried associations to quantitative differences in PET
image parameters between static free-breathing and respiratory-gated acquisitions. Thus, we
introduced the feature F8, the relative relation of end-expiration/inspiration displacement drift
and cycle amplitude, to represent characteristics of end-expiration/inspiration displacement in
EI breathing cycles.

2.3.2. Statistical feature extraction. Each respiratory trace contained hundreds of breathing
cycles as each PET scan lasted 45–60 min. Eight morphological features were extracted
from each EI cycle. Thus for a respiratory trace, each morphological feature had hundreds
of observation values. Additionally, statistical analysis on these feature distributions was
performed and summarized the characteristics of the entire respiratory time series trace using
a much smaller feature dimension. In particular, numerous statistical measures such as mean,
standard deviation, skewness, kurtosis, entropy, range, and maximum/minimum value were
considered. However, features were not selected directly from all the possible statistical
measures together, since that would incur serious problems in feature selection when the
number of variables is much larger than the sample size (Fan and Lv 2010). Instead a group
selection structure methods was employed to pick up only two statistical measures at a time
and then a stepwise feature selection approach was performed, which is discussed in the next
section. Two statistical measures, standard deviation and entropy, were selected to report in this
paper since they provided clear interpretations of physiological characteristics of respiratory
patterns, namely lower order variability due to periodic breathing and higher order variability
due to random breathing. Given a time series of a morphological feature F = [ f1, f2, . . . , fp],
where the subscript indicates the index of a breathing cycle, the seven statistical measures
were calculated as follows.

• Standard deviation: SF1 =
√∑p

1 ( fi−μ)2

p−1 , where μ was the feature mean with μ = ∑p
1 fi/p.

Standard deviation represented how much variation existed from the average level. Here
for each extracted EI feature from a patient, the standard deviation indicates the feature
variations over all the breathing cycles in the respiratory trace of the patient. A low standard
deviation indicates that the feature values tend to be very close to the average; and a high
standard deviation indicates that the EI feature values were spread out over a large range
of values.

• Entropy: SF2 = −∑p
i=1 P( fi)logbP( fi), where P( fi), the probability of the value of fi

from the estimated probability mass function P(F ) from samples; b was the base of the
natural logarithm (i.e. b = e ≈ 2.718 28). Entropy was defined as the uncertainty in a
random variable in information theory. For an extracted EI feature of a patient, if the feature
values were more deterministic (or stable) over breathing cycles in the respiratory trace
of the patient, the entropy was low (close to 0). Otherwise, the entropy of this feature was
high (close to 1), which indicated the EI feature was more irregular and likely to change
significantly from one breathing cycle to another.

2.4. Regression analysis and prediction model

The regression analysis explored the relationships between the imaging variable to be predicted
and a set of potential predictor variables from the respiratory pattern. In particular, multiple
linear regression with linear functions of a set of predictor variables was used for prediction
since it is mathematically well established and usually easy to interpret. In this study, multiple
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Figure 6. Error limit of the adaptive hit rate with respect to measured %�SUVpeak.

linear regression was applied to construct a prediction model between quantitative imaging
improvement (%�SUVpeak) and the feature variables extracted from the respiratory motion
traces of the 22 patients. To construct a valid regression model for prediction without over-
fitting and over-complexity, a feature selection step was utilized to prune unnecessary predictor
variables and only keep the most important predictor variables in the model based on certain
prediction performance evaluation. The prediction performance measure, the feature selection
and the model validation will be discussed in the following subsections.

2.5. Prediction performance measure

A performance measure was introduced, called hit rate, to evaluate prediction performance of
our regression model. The hit rate was defined as follows:

Definition 1. Hit rate: given a tolerable error limit, say p%, for each subject, if the predicted
value was within actual %�SUVpeak ±p%, it was counted as a correct prediction. The hit
rate was the percentage of correct predictions over all predictions.

The error limit was either fixed or adaptive with respect to %�SUVpeak ± p%. Thus, fixed
hit rate and adaptive hit rate were defined respectively. A fixed hit rate was defined by a fixed
value of error limit. A prediction was considered correct if the predicted value was within the
error limit of the measured %�SUVpeak ±p%. In this study, the fixed error limit values were
set to 3%, 5%, and 7%, corresponding to hit(3%), hit(5%), and hit(7%), respectively.

In addition, the increases of SUVpeak around 10% was used to determine the effectiveness
of the gating approach, as this magnitude was considered to reside above the noise threshold
(Efron 1983). The gated method was considered to be effective if the increase of SUVpeak

was higher than 10%. Thus, it was practically important to make accurate predictions around
10% to provide useful decision-making information for physicians to decide whether to use
gated approach. To meet this practical consideration, an adaptive hit rate was designed to
evaluate prediction performance. Lower error tolerance was assigned between 5% and 15%
of %�SUVpeak ± p% and allowed larger prediction errors in other areas. In particular, the
adaptive hit rate was defined as follows (see figure 6),
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• for 5% � %�SUVpeak < 15%, the error limit was 5%. A prediction within 5% was
considered as a correct prediction;

• for %�SUVpeak � 25% and %�SUVpeak < −5%, the error limit was 10%. A prediction
within 10% was considered as a correct prediction;

• for −5% � %�SUVpeak < 5% and 15% � %�SUVpeak < 25%, the error limit increased
linearly from 5% to 10% in the %�SUVpeak range of [−5%, 5%] and [15%, 25%],
respectively.

2.6. Stepwise feature selection

Eight morphological features were extracted for each EI cycle, and each morphological feature
had two statistical measures. Thus, each respiratory trace contained (8) × 2 = 16 features
as demonstrated in figure 4. Although these 16 features described a respiratory trace in great
detail, it was undesirable to use them all in a prediction model in order to avoid over-fitting, as
the number of features was larger than the number of samples. In addition, a regression model
with too many variables would be hard to interpret and inconvenient to use in clinical practice.
Not all of the extract features were necessarily informative to respiratory-gated PET imaging
quality quantification. A prediction model only with a few informative features would result
in more interpretability, shorter training times, and enhanced generalization with reduced
over-fitting.

A stepwise feature selection approach was implemented, which is a popular and widely
used approach in statistics to select variables for regression models (Draper and Smith 1998,
Miller 2002, Hocking 1976). Starting with no variables (features) in the model, it selects and
removes predictive variables in a regression model automatically by a sequence of statistical
significant test, such as F-tests, t-test, Akaike information criterion (AIC), etc. The stepwise
feature selection procedure was based on the p-value of F-test, which is described as follows.

• Starting with no feature, a variable was added or removed according to the p-value of the
F-statistic in F-test of regression coefficients. The maximum p-value for a variable to be
added was 0.05; The minimum p-value for a term to be removed was 0.10.

• The procedure continued iteratively until the regression model could not be improved
based on the F-test.

• The selected features were those in the final regression model after stepwise selection.

2.7. Predictability evaluation framework by cross-validation

In order to reduce the bias of training and testing data, cross-validation techniques have been
extensively used as a method to estimate the generalization error based on ‘resampling’ by
assessing how well the regression model obtained in the training phase perform on future
unseen data in the testing phase. The n-fold cross-validation usually divided a dataset into n
subsets of (approximately) equal size. Each time a subset was left-out, a regression model was
trained on (n − 1) subsets and tested on the left-out subset. The procedure repeats until all
the subsets have been left-out and tested once (Efron 1983). In this study, due to the limited
respiratory traces available (only 22), n-fold cross-validation was not appropriate because
the various folds of the training and the fold of the testing would include many respiratory
traces that were drawn from the same patients. This situation would increase the likelihood
of bias and, thereby, would artificially increase the prediction accuracy. To avoid such a
situation, a leave-one-patient-out cross-validation methodology was applied, which trained a
regression prediction model using respiratory traces of 21 patients, and tested the obtained

10



Phys. Med. Biol. S Wang et al

The Entire Dataset of 22
Patients with SUVpeak

 21 Patients 1 Patient

Leave-One-Out Cross Validation

Leave-One-Out Procedure For Feature Selection

 20 Patients
Stepwise Feature Selection

Record the Selected Features

Complete Leave-
One-Out Runs?

No

Yes

Continue Leave-One
-Out Procedure

Select the Top 6 Most Frequently Selected
Features in the Leave-One-Out Feature
Selection Procedure.

Train a Regression Model with the 6 Selected
Features Using the dataset of the 20 Patients.

 Prediction
Model
(The

Trained
Regression

Model)

Test

Figure 7. Flowchart of the leave-one-out cross-validation procedure.

prediction model to predict the value of %�SUVpeak of the left-out patient. This procedure was
repeated 22 times for the 22 patients. The leave-one-patient-out cross-validation methodology
removed the potential for assessment bias. The flowchart of the implemented leave-one-out
cross-validation procedure is shown in figure 7.

In addition to training our regression model to optimize regression parameters, respiratory
features must also be selected optimally for inclusion in the regression models. Since the
patient sample size (22 patients) was not high relative to the number of candidate variables
(16 extracted features), the traditional information criteria such as Bayesian information
criterion and AIC were not appropriate as the stopping rules in the stepwise searches of
small sample sizes would not be strict enough (Kadanea and Lazara 2004). Thus, as illustrated
in figure 7, a nested leave-one-out cross-validation was employed, in which a leave-one-out
feature selection procedure was performed to validate the goodness of selected features under
each cross-validation fold. Particularly, in each fold of leave-one-out cross-validation of the
regression model, our training dataset contained 21 subjects, whereby one (subject) cross-
validation was utilized to train and test our prediction model 21 times (folds). In each fold,
data from 20 subjects were used to select features and train our final prediction model, which
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Table 1. The leave-one-patient-out cross-validation results with respect to four cycle-
gating threshold levels (20%, 30%, 40%, and 50%).

Leave-one-out cross-validation
Cycle gating
Threshold (P%) Correlation Hit(3%) Hit(5%) Hit(7%) Hit(adapt)

20% 0.76 0.50 0.73 0.95 0.77
30% 0.88 0.59 0.95 0.95 0.95
40% 0.80 0.41 0.77 0.95 0.95
50% 0.67 0.36 0.73 0.91 0.86

was tested on the one left-out subject. To select features and train our model, a stepwise feature
selection approach was performed for each subset of 20 subjects 20 times using a leave-one-
out cross-validation. The features selected in different subsets were different, and the numbers
of selected features were also different. These sets of selected features were investigated for
different subject subsets, and observed that, in most cases, there were six features that were
most frequently selected in different sets of selected features. Thus, six features remained as
a final robust feature set used to construct regression prediction models in this study.

3. Experimental results

3.1. Evaluation of the predictability of %�SUVpeak

The leave-one-out cross-validation results with respect to four cycle-gating threshold levels are
summarized in table 1. Four values of amplitude gating threshold (20%, 30%, 40%, and 50%)
were employed in feature extraction. The best cross-validation performances were achieved
by using the cycle-gating threshold 30%. The hit rates were hit(3%) = 0.59, hit(5%) = 0.95,
hit(7%) = 0.95, and hit(adapt) = 0.95. Figure 8 shows the measured and predicted values of
%�SUVpeak for the 22 patients. The correlation coefficient between the measured %�SUVpeak

and the predicted values was 0.88. The predicted %�SUVpeak values were highly correlated
with the actual measured values. Since the trained prediction models in cross-validation did
not use any information from the left-out testing patients, the high testing prediction accuracies
and high correlation indicated the feasibility of predicting value changes in the imaging quality
metric SUVpeak using only motion pattern features from respiratory traces.

3.2. Training and robustness analysis of prediction models

The cross-validation results confirmed the possibility to predict SUVpeak changes using few
variables. However, the trained regression models in different cross-validation runs could
produce highly variable results as different subsets of features could be selected. In clinical
practice, it would be desirable for physicians to have one prediction model with the most
important variables to make predictions and assist their decision-making process. Only
using the EI feature set, the selected features in all the 22 cross-validation experiments
were recorded to pick the top six most frequently selected features as a robust set of
important features for prediction of SUVpeak changes. The six selected features are listed
in table 2 and include entropy of cutoff cycle amplitude at gating threshold of 30%, entropy
of cutoff cycle duration at gating threshold of 30%, standard deviation of the ratio between
cutoff amplitude and cutoff period at gating threshold 30%, standard deviation of the ratio
between cutoff period at gating threshold 30% and cycle duration, standard deviation of
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Figure 8. The measured and predicted %�SUVpeak for the 22 patients in the leave-
one-patient-out cross-validation. In each cross-validation run, a regression model was
obtained from 21 patients and tested on the left-out patient. The testing regression
model did not use any information from the left-out patient. The testing performances
are hit(3%) = 0.59, hit(5%) = 0.95, hit(7%) = 0.95, hit(adapt) = 0.95.

Table 2. The selected prediction variables by stepwise feature selection from EI cycle
feature set.

Selected statistical Variable
Selected respiratory motion features from EI cycles features denotation

F1: cutoff cycle amplitude at gating threshold of 30% SF2: entropy X1

F2: cutoff cycle duration at gating threshold of 30% SF2: entropy X2

F3: ratio of cutoff amplitude and cutoff period at SF1: standard deviation X3

gating threshold 30%
F4: ratio of cutoff period at gating threshold 30% and SF1: standard deviation X4

cycle duration
F7: cycle duration SF1: standard deviation X5

F8: ratio of end-inspiration drift and cycle amplitude SF1: standard deviation X6

cycle duration, and standard deviation of the ratio between end-inspiration drift and cycle
amplitude. With the 6 selected variables, the regression model was trained from the 22 patients
to predict SUVpeak value changes. To avoid potential bias in prediction validation, a leave-
N-out strategy determined the regression coefficient values in the final prediction model.
Specifically, a set of regression coefficients was obtained in each leave-N-out run, where
N = 1, 2, and 3 in the experiments. The coefficients of the final prediction model were the
averaged coefficients over all leave-N-out runs. Table 3 shows three prediction models whose
regression coefficients were averaged from leave-one-out, leave-two-out, and leave-three-out
experiments, respectively. The testing hit rates of the 3 models on the 22 patients are also
reported in the table 3. Though slight variations in regression coefficients were observed, the
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Table 3. Three prediction models with the six selected prediction variables obtained
by averaging over leave-one-out, leave-two-out, and leave-three-out procedure,
respectively.

Model 1: averaged over leave-one-out %�SUVamp = −42.73 + 18.57X1+0.18X2 − 116.40 X3 −
0.11 X4 − 17.18 X5 + 9.80 X6

Model 2: averaged over leave-two-out %�SUVamp = −42.89 + 18.72X1+0.18X2 − 116.95 X3 −
0.11 X4 − 17.19 X5 + 9.83 X6

Model 3: averaged over leave-three-out %�SUVamp = −43.00 + 18.86X1 + 0.18X2 − 117.54 X3 −
0.11 X4 − 17.19 X5 + 9.86 X6

Testing prediction accuracy Hit(3%) = 0.95, Hit(5%) = 1, Hit(7%) = 1, Hit(adapt) = 1
(The testing prediction accuracies were same for model 1,
2, and 3.)

Table 4. Testing prediction performance for the 22 patients using the prediction model
which was averaged over the leave-one-out procedure: %�SUVpeak = −42.73 +
18.57X1 + 0.18X2 − 116.40X3 − 0.11X4 − 17.18X5 + 9.80X6. The hit rates were
hit(3%) = 0.95, hit(5%) = 1.00, hit(7%) = 1.00, and hit(adapt) = 1.00.

Patient Measured Predicted Prediction Hit Hit Hit Hit
index %�SUVpeak %�SUVpeak error (3%) (5%) (7%) (adapt)

1 20.9 20.87 0.03 1 1 1 1
2 18.4 17.25 1.15 1 1 1 1
3 3.4 1.49 1.91 1 1 1 1
4 2.7 −0.27 2.97 1 1 1 1
5 5.1 6.60 −1.50 1 1 1 1
6 0.2 0.47 −0.27 1 1 1 1
7 8.2 10.69 −2.49 1 1 1 1
8 5.6 5.60 0.00 1 1 1 1
9 0.5 2.56 −2.06 1 1 1 1

10 8.6 7.69 0.91 1 1 1 1
11 2.2 0.16 2.04 1 1 1 1
12 −1.1 2.58 −3.68 0 1 1 1
13 2.2 −0.39 2.59 1 1 1 1
14 −1.3 −1.41 0.11 1 1 1 1
15 1.4 2.50 −1.10 1 1 1 1
16 2.9 1.55 1.35 1 1 1 1
17 4.6 5.76 −1.16 1 1 1 1
18 12.5 10.46 2.04 1 1 1 1
19 −0.8 0.01 −0.81 1 1 1 1
20 5.1 3.74 1.36 1 1 1 1
21 −2.8 −0.77 −2.03 1 1 1 1
22 −3.5 −2.37 −1.13 1 1 1 1

Prediction accuracy 0.95 1.00 1.00 1.00

3 models achieved the same prediction accuracy when they were tested on the 22 patients.
The hit rates were hit(3%) = 0.95, hit(5%) = 1.00, hit(7%) = 1.00, and hit(adapt) = 1.00.
Table 4 shows the measured and predicted values of %�SUVpeak for the 22 patients using the
prediction model averaged over the leave-one-out procedure (model 1 in table 3). The table also
summarizes each patient’s testing prediction results with respect to the four prediction error
limits (3%, 5%, 7% and adaptive). A patient was marked as 0 if the prediction error was larger
than the error limit; otherwise, the patient was marked as 1. One can see that only patient 12 was
mispredicted using the error limit of 3% and all others were correctly predicted with errors
within the corresponding error limits. The measured and predicted values of %�SUVpeak

are also plotted in figure 9. As shown in the figure, the predicted %�SUVpeak values are
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Figure 9. The measured and predicted %�SUVpeak for the 22 patients using
the prediction model which was averaged over the leave-one-out procedure:
%�SUVpeak = −42.73 + 18.57X1 + 0.18X2 − 116.40X3 − 0.11X4 − 17.18X5 + 9.80X6.
The testing prediction performances are hit(3%) = 0.95, hit(5%) = 1, hit(7%) = 1,
hit(adapt) = 1.

highly correlated with the measured values. These testing prediction results confirmed that the
prediction model with six variables was sufficient to prospectively predict SUVpeak changes
due to use of gating.

For a set of ideal prediction variable, the measured regression coefficients are expected to
be robust in different cross-validation runs. Thus, the robustness of the regression coefficients
across leave-N-out cross-validation runs was evaluated. The regression coefficients and their
standard deviations cross-validation runs are shown in table 5. The variation ratio between
standard deviation and the absolute value of the regression coefficients were employed to
assess the model stability. The coefficient variation ratios were increasing slightly from leave-
one-out to leave-three-out experiments. In the leave-three-out experiment, the variation ratios
of all regression coefficients were less or equal than 0.20 except X4 which reached as high as
a variation ratio of 0.28. Overall, the regression coefficient variations were small compared to
their amplitudes. This outcome indicated that the selected six prediction variables were a robust
subset of features to predict PET imaging quality improvements in terms of %�SUVpeak.

4. Discussion

This work investigated a high dimensional space of respiratory motion pattern features with
the aim of predicting improvements in respiratory-gated PET/CT imaging metrics relative to
free-breathing static PET/CT. By using only respiratory pattern characteristics, a model of six
variables (features) was developed to predict PET image quality improvements due to gating
in terms of relative change in SUVpeak, %�SUVpeak, which would allow for individual patient
assessment prior to PET/CT acquisition.
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Table 5. Robustness of the regression coefficients with respect to leave-one, -two, and -three-out model averaging procedures.

Model 1: averaged over leave-one-out Model 2: averaged over leave-two-out Model 3: averaged over leave-three-out

Prediction variable Coefficient Std. Std./abs(coefficient) Coefficient Std. Std./abs(coefficient) Coefficient Std. Std./abs(coefficient)

Intercept −42.73 2.02 0.05 −42.89 2.94 0.07 −43.00 3.77 0.09
X1 18.57 2.04 0.11 18.72 3.00 0.16 18.86 3.84 0.20
X2 0.18 0.01 0.07 0.18 0.02 0.10 0.18 0.02 0.14
X3 −116.40 6.57 0.06 −116.95 9.71 0.08 −117.54 12.46 0.11
X4 −0.11 0.01 0.12 −0.11 0.02 0.20 −0.11 0.03 0.28
X5 −17.18 0.66 0.04 −17.19 1.00 0.06 −17.19 1.32 0.08
X6 9.80 0.40 0.04 9.83 0.57 0.06 9.86 0.73 0.07
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The averaged prediction accuracy was higher than 90% over the population of 22 patients
when using the leave-one-patient-out cross-validation. While other investigators have built
predictive models of respiratory motion patterns (McCall and Jeraj 2007, Ren et al 2007,
Riaz et al 2009), particularly for application to respiratory-gated radiation therapy, none
have explicitly linked them to changes in quantitative molecular imaging with PET/CT. Our
prediction model would enable clinicians to efficiently and accurately evaluate uncertainties
due to respiratory motion prior to PET/CT acquisition, which may have an impact on patient
care strategies. For example, the following patient-specific workflow could be enacted.

• With patient lying on PET/CT scanner bed, acquire representative sample respiratory trace
(e.g., < 5 min).

• Calculate respiratory features and predict changes in SUVpeak metric due to motion.
• Determine whether quantitative changes exceed predefined threshold (e.g., 10% change in

SUVpeak ± 95% confidence interval of model prediction).
• If prediction exceeds threshold, patient would likely to benefit from respiratory-gated

PET/CT and one could proceed with the image acquisition under free-breathing conditions.
• If predicted change in image metric is not significant, patient is not likely to benefit from

respiratory-gated PET/CT due to the respiratory pattern. Instead, one could implement
more invasive motion management strategies such as abdominal compression or active
breathing control prior to image acquisition.

Interestingly, this workflow relied only on respiratory pattern parameters to make a
prediction on changes in PET quantification. When prior CT images were available for
review, the model could in principle incorporate additional factors such as lesion location.
However, the gains in predictive power when including prior CT factors were not observed
to be significant and were therefore omitted from the final model. This may be due in part
to sufficient correlation between the external abdominal displacement and the internal tumor
motion, which does vary between patients. Nevertheless, the preliminary model validation was
robust for this cohort of patients with thoracic and abdominal lesions of differing location,
meaning that respiratory patterns alone appeared to account for a large percentage of the
variance in observed PET image parameters.

A crucial component of the prediction model was its construction from generalized
statistical regression methods. Since it was independent of both the respiratory pattern
measuring device and PET/CT scanner, the analysis could be replicated at other clinical
and academic centers. Specifically, a different set of prediction model coefficients could be
derived when using a different combination of PET/CT system and respiratory measurement
device. The extracted respiratory pattern features would potentially vary for predicting imaging
changes generated by different respiratory gating algorithms, as quantitative improvements in
phase-gated PET images may depend on measures of phase shifts due to variable breathing
cycle durations while improvements in fixed amplitude-gated PET images may depend on
measures of baseline displacement drifts. However, the sensitivity of such models to accurately
predict changes in individual patients would likely remain highest during the end-exhale
portion of the breathing cycle at times of lower residual motion and lowest during fast phase
transitions to peak inhale at times of high residual motion. Different SUV metrics, such as
SUVmax or SUVmean, could also be chosen to fit an alternate statistical model. For example, an
SUVmax model would tend to have high inter-patient variability in the prediction accuracy due
to the influence of noise on image parameter changes. On the other hand, an SUVmean model
would yield lower correlation between respiratory pattern parameters and image parameters as
the influence of motion on SUVmean is dependent upon the region-of-interest that defines the
lesion. The SUVpeak prediction model balances the impact of noise with sufficient sensitivity
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to respiratory motion. Ultimately, the flexibility afforded with this approach enabled the
individualization of patient management for respiratory-gated PET/CT that over time could
be cross-calibrated between scanners, respiratory motion surrogates, and gating methods in
multi-institution trials.

The study was limited primarily by a small patient sample size of only 22 patients.
Future work includes a completely independent validation of the prediction model on a second
test cohort of patients. This would enable the application of the model as a decision tool,
whereby sample respiratory traces for a given a patient could inform the manner by which
respiratory motion should be managed during PET/CT acquisition. Alternatively, the tool may
be used after a PET/CT acquisition to assess whether a free-breathing static or respiratory-
gated image should be reconstructed, as some patient images may not benefit from any
form of motion management. Furthermore, the predicted changes in SUV metrics between
respiratory-gated acquisition and free-breathing static acquisition may relate an estimate of the
expected quantitative uncertainty when assessing routine clinical PET images. For instance,
the reported SUV in a region-of-interest could carry a confidence interval over which clinicians
could reliably interpret the findings.

5. Conclusion

The results of the prediction model supported the need for improved patient-specific
management of respiratory motion during PET/CT acquisition. This work addressed such
a need by proposing a comprehensive tool to support clinical decision-making. Increasingly
accurate and robust prediction models may pave the way for efficient patient classification
and motion uncertainty mitigation, which would assist clinicians when utilizing quantitative
PET/CT for therapy target definition and response assessment.

Acknowledgments

This work was supported by NIH grant 5P30 CA015704 and a research contract from GE
Healthcare (Waukesha, WI).

References

Aristophanous M, Berbeco R, Killoran J, Yap J, Sher D, Allen A, Larson E and Chen A 2011 Clinical
utility of 4D FDG-PET/CT scans in radiation treatment planning Int. J. Radiat. Oncol. Biol.
Phys. 82 e99–105

Aristophanous M, Yap J, Killoran J, Chen A and Berbeco R 2011 Four-dimensional positron emission
tomography: implications for dose painting of high-uptake regions Int. J. Radiat. Oncol. Biol.
Phys. 80 900–8

Avril N and Weber W 2005 Monitoring response to treatment in patients utilizing PET Radiol. Clin.
North Am. 43 189–204

Bettinardi V, Picchio M, Muzio N D, Gianolli L, Gilardi M C and Messa C 2010a Detection and
compensation of organ/lesion motion using 4d-PET/CT respiratory gated acquisition techniques
Radiother. Oncol. 96 311–6

Bettinardi V, Picchio M, Muzio N D, Gianolli L, Messa C and Gilardi M C 2010b PET/CT for
radiotherapy: image acquisition and data processing Q. J. Nucl. Med. Mol. Imaging 54 455–75

Bettinardi V, Picchio M, Muzio N D and Gilardi M 2012 Motion management in positron emission
tomography/computed tomography for radiation treatment planning Semin. Nucl. Med. 42 289–307

Bowen S, Nyflot M, Gensheimer M, Hendrickson K, Kinahan P, Sandison G and Patel S 2012 Challenges
and opportunities in patient-specific, motion-managed, and PET/CT-guided radiation therapy of
lung cancer: review and perspective Clin. Transl. Med. 1 18

18

http://dx.doi.org/10.1016/j.ijrobp.2010.12.060
http://dx.doi.org/10.1016/j.ijrobp.2010.08.028
http://dx.doi.org/10.1016/j.rcl.2004.09.006
http://dx.doi.org/10.1016/j.radonc.2010.07.014
http://dx.doi.org/10.1053/j.semnuclmed.2012.04.001
http://dx.doi.org/10.1186/2001-1326-1-18


Phys. Med. Biol S Wang et al

Caldwell C, Mah K, Ung Y, Danjoux C, Balogh J, Ganguli S and Ehrlich L 2001 Observer variation in
contouring gross tumor volume in patients with poorly defined non-small-cell lung tumors on CT:
the impact of 18FDG-hybrid PET fusion Int. J. Radiat. Oncol. Biol. Phys. 51 923–31

Draper N and Smith H 1998 Applied Regression Analysis 3rd edn (Hoboken, NJ: Wiley-Interscience)
pp 307–12 (www.wiley.com/WileyCDA/WileyTitle/productCd-0471170828.html)

Efron B 1983 Estimating the error rate of a prediction rule: improvement on cross-validation J. Am. Stat.
Assoc. 78 316–31

Fan J and Lv J 2010 A selective overview of variable selection in high dimensional feature space Stat.
Sin. 20 101–48 (PMC: 3092303)

Guerra L et al 2012 Respiratory gated PET/CT in a European multicentre retrospective study:
added diagnostic value in detection and characterization of lung lesions Eur. J. Nucl. Med. Mol.
Imaging 39 1381–90

Hamalainen R and Kettunen A 2000 Stability of Fourier coefficients in relation to changes in respiratory
air flow patterns Med. Eng. Phys. 22 733–9

Hocking R 1976 The analysis and selection of variables in linear regression Biometrics 32 1–49
Imamura Y et al 2011 Prognostic value of SUVmax measurements obtained by FDG-PET in patients

with non-small cell lung cancer receiving chemotherapy Lung Cancer 71 49–54
Kadanea J and Lazara N 2004 Methods and criteria for model selection J. Am. Stat. Assoc. 99 279–90
Keall P et al 2006 The management of respiratory motion in radiation oncology report of AAPM task

group 76 Med. Phys. 33 3874–900
Liu C, Alessio A, Pierce L, Thielemans K, Wollenweber S, Ganin A and Kinahan P 2010 Quiescent

period respiratory gating for PET/CT Med. Phys. 37 5037–43
Liu C, Pierce L II, Alessio A and Kinahan P E 2009 The impact of respiratory motion on tumor

quantification and delineation in static PET/CT imaging Phys. Med. Biol. 54 7345–62
McCall K and Jeraj R 2007 Dual-component model of respiratory motion based on the periodic

autoregressive moving average (periodic ARMA) method Phys. Med. Biol. 52 3455–66
Miller A 2002 Subset Selection in Regression 2nd edn (London: Chapman and Hall) (www.crcpress.com/

product/isbn/9781584881711)
Nehmeh S A, Erdi Y E, Ling C C, Rosenzweig K E, Schoder H, Larson S M, Macapinlac H A, Squire O D

and Humm J L 2002 Effect of respiratory gating on quantifying PET images of lung cancer J. Nucl.
Med. 43 876–81 (PMID: 12097456)

Nehmeh S A, Erdi Y E, Rosenzweig K E, Schoder H, Larson S M, Squire O D and Humm J L 2003
Reduction of respiratory motion artifacts in PET imaging of lung cancer by respiratory correlated
dynamic PET: methodology and comparison with respiratory gated PET J. Nucl. Med. 44 1644–8
(PMID: 14530480)

Ren Q, Nishioka S, Shirato H and Berbeco R 2007 Adaptive prediction of respiratory motion for motion
compensation radiotherapy Phys. Med. Biol. 52 6651–61

Riaz N, Shanker P, Wiersma R, Gudmundsson O, Mao W, Widrow B and Xing L 2009 Predicting
respiratory tumor motion with multi-dimensional adaptive filters and support vector regression
Phys. Med. Biol. 54 5735–48

Riviere C N, Thakral A, Iordachita I I, Mitroi G and Stoianovici D 2001 Predicting respiratory motion
for active canceling during percutaneous needle insertion EMBS’01: Proc. 23rd Annu. Int. Conf.
IEEE Engineering in Medicine and Biology Society 4 3477–80

Senan S and Ruysscher D D 2005 Critical review of PET-CT for radiotherapy planning in lung cancer
Crit. Rev. Oncol. Hematol. 56 345–51

Strauss-Blasche G, Moser M, Voica M, McLeod D, Klammer N and Marktl W 2000 Relative
timing of inspiration and expiration affects respiratory sinus arrhythmia Clin. Exp. Pharmacol.
Physiol. 27 601–6

Tobin M 1992 Breathing pattern analysis Intensive Care Med. 18 193–201
Tobin M, Chadha T, Jenouri G, Birch S, Gazeroglu H and Sackner M 1983 Breathing patterns: I. Normal

subjects Chest 84 202–5
Vansteenkiste J F et al 1998 Lymph node staging in non-small-cell lung cancer with FDG-PET scan: a

prospective study on 690 lymph node stations from 68 patients J. Clin. Oncol. 16 2142–9 (PMID:
9626214)

Wahl R, Jacene H, Kasamon Y and Lodge M 2009 From RECIST to PERCIST: evolving considerations
for PET response criteria in solid tumors J. Nucl. Med. 50 (Suppl. 5) 122S–50S

Wong J, Sharpe M, Jaffray D, Kini V, Robertson J, Stromberg J and Martinez A 1999 The use of
active breathing control (ABC) to reduce margin for breathing motion Int. J. Radiat. Oncol. Biol.
Phys. 44 911–9

19

http://dx.doi.org/10.1016/S0360-3016(01)01722-9
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471170828.html
http://dx.doi.org/10.1080/01621459.1983.10477973
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3092303
http://dx.doi.org/10.1007/s00259-012-2148-2
http://dx.doi.org/10.1016/S1350-4533(01)00007-8
http://dx.doi.org/10.2307/2529336
http://dx.doi.org/10.1016/j.lungcan.2010.04.004
http://dx.doi.org/10.1198/016214504000000269
http://dx.doi.org/10.1118/1.2349696
http://dx.doi.org/10.1118/1.3480508
http://dx.doi.org/10.1088/0031-9155/54/24/007
http://dx.doi.org/10.1088/0031-9155/52/12/009
http://dx.doi.org/10.1201/CHMONSTAAPP
http://www.crcpress.com/product/isbn/9781584881711
http://www.crcpress.com/product/isbn/9781584881711
http://www.ncbi.nlm.nih.gov/pubmed/12097456
http://www.ncbi.nlm.nih.gov/pubmed/14530480
http://dx.doi.org/10.1088/0031-9155/52/22/007
http://dx.doi.org/10.1088/0031-9155/54/19/005
http://dx.doi.org/10.1109/IEMBS.2001.1019580
http://dx.doi.org/10.1016/j.critrevonc.2005.05.001
http://dx.doi.org/10.1046/j.1440-1681.2000.03306.x
http://dx.doi.org/10.1007/BF01709831
http://dx.doi.org/10.1378/chest.84.2.202
http://www.ncbi.nlm.nih.gov/pubmed/9626214
http://dx.doi.org/10.2967/jnumed.108.057307
http://dx.doi.org/10.1016/S0360-3016(99)00056-5

	1. Introduction
	2. Materials and methods
	2.1. Experimental design and data acquisition
	2.2. Fourier spectrum analysis and signal denoising
	2.3. Feature extraction
	2.4. Regression analysis and prediction model
	2.5. Prediction performance measure
	2.6. Stepwise feature selection
	2.7. Predictability evaluation framework by cross-validation

	3. Experimental results
	3.1. Evaluation of the predictability of
	3.2. Training and robustness analysis of prediction models

	4. Discussion
	5. Conclusion
	Acknowledgments
	References



