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Abstract: Most of the current epileptic seizure prediction
algorithms require much prior knowledge of a patient’s pre-seizure
electroencephalogram (EEG) patterns. They are impractical to be
applied to a wide range of patients due to a very high inter-individual
variability of EEG patterns. This paper proposes an adaptive
prediction framework, which is capable of accumulating knowledge of
pre-seizure EEG patterns by monitoring long-term EEG recordings.
The experimental results on five patients indicate that the proposed
prediction approach is effective to achieve a personalized seizure
predication for each patient using a gradient-based adaptive learning
framework.
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1 Introduction

According to Engel and Pedley (1997), about 50 million people suffer from
epilepsy, which is a chronic neurological disorder characterized by recurrent
unprovoked seizures. Epileptic seizures generally occur without any warning, the
shift between normal brain state and seizure onset is often described as an abrupt
phenomenon. The seemingly unpredictability of epileptic seizures is one of the
major causes of morbidity and stress in patients with epilepsy. Therefore, being
able to identify pre-seizure symptoms could significantly improve the quality of life
for these patients and can also open new diagnostic and therapeutic opportunities
in epilepsy treatment.

Over the recent years, there has been accumulating evidence indicating that
a transitional pre-seizure state does exist prior to seizure onset. As stated in
Delamont et al. (1999), pre-seizure symptoms such as irritability or headache
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are frequently exhibited minutes, hours or even days prior to seizure onsets.
Some other clinical findings also support the existence of a pre-seizure state,
such as increases in cerebral blood flow, oxygen availability, and blood oxygen
level-dependent signal, and changes in heart rate prior to seizure occurrence. The
quantitative studies of the pre-seizure state are mostly based on EEG recordings
from patients with epilepsy. For example, Lehnertz and Elger (1998) showed that
the correlation dimension decreases prior to seizures. Quyen et al. (2003) reported
a reduction in the dynamical similarity index before seizure occurrence. lasemidis
et al. (1997) noted premonitory pre-seizure changes based on the analysis of
dynamical entrainment. Mormann et al. (2006) observed a pre-seizure drop in
phase synchronization up to hours prior to seizure onset.

In the past decades, many studies have been carried out aiming to predict
epileptic seizures. Seizure predictability by EEG recordings has been confirmed
by a number of groups (Elger and Lehnertz (1998); Lehnertz and Elger (1998);
Quyen et al. (1999); Litt et al. (2001); Jerger et al. (2005)). An extensive
survey of EEG-based seizure prediction techniques can be found in Mormann
et al. (2007). Most of the current seizure prediction methods mainly have two
steps. Firstly, EEG features are extracted from a sliding moving window. Then
each window-EEG is classified as either pre-seizure or normal by comparing the
extracted EEG features with the predefined threshold levels. Whenever a window-
EEG is classified as pre-seizure, a warning alarm is triggered indicating that
an impending seizure may occur within a pre-defined prediction horizon. These
methods have shown good results for some patients. However, the reliability and
repeatability of the results have been questioned when they were tested on other
EEG datasets. Many of the earlier optimistic findings cannot be reproduced or
achieved poor performance in extended EEG datasets in later studies as reported
in Aschenbrenner-Scheibe et al. (2003). This is not surprising since the optimal
threshold obtained from a few number of patients may not be appropriate to
many others. Therefore, we regard the future perspective of a practical seizure
prediction system with ‘optimized’ thresholds as unrealistic. Instead, we would
conjecture the most promising approach should be an intelligent method that can
be autonomously adaptive to each individual patient with learning ability.

Inspired by the great reinforcement learning ability of human beings, we
attempt to construct an adaptive learning system, which could interactively learn
from a patient, and is capable of improving prediction performance over time.
In addition, many of the current seizure prediction studies are basically to solve
a classification problem for normal and pre-seizure EEG data. The resulting
methods do not take sufficient account of the online monitoring property in their
prediction methods. The proposed adaptive framework successfully combines the
reinforcement learning concept, online monitoring and adaptive control theory
to achieve the online patient-specific seizure prediction. This work is among
the pioneering attempts to tackle the greatly challenging task of online seizure
prediction. The prediction framework avoids a sophisticated threshold-tuning
process, and largely enhances the adaptability of the current prediction techniques.
The autonomous self-adaptation property of the system makes it convenient to use
for end users, such as physicians and patients. The outcome of this study would
shed some light on the perspective reliable online seizure prediction techniques. It



4 S. Wang, W. Chaovalitwongse, and S. Wong

may also improve the medical diagnosis and prognosis in other brain diseases, such
as sleep disorders and cognitive disorders.

This paper is organized as follows. Section 2 presents the experimental
methods, including EEG collection, feature extraction, and the proposed adaptive
learning framework. The experimental results are provided in Section 3, and we
conclude the paper in Section 4.

2 Methods

All the experiments were performed on an Intel Xeon 2.0 GHz 64-bits workstation
with 16 gigabytes of memory running on Windows Server 2003. All calculations
and algorithms were implemented and run on MATLAB R2009b. Both default
Matlab programs and user-designed programs were used in the experiments.

2.1 Data Collection

Intracranial EEG recordings from five epileptic patients with temporal lobe
epilepsy were analyzed in this study. The placement of the EEG electrodes is
shown in Figure 1, which is a modified image of the inferior transverse view of
the brain from Potter (2006). The recorded EEG data is summarized in Table 1.
The EEG recordings consist of 26 standard channels, and the durations are ranged
from 3 to 13 days. A total of 89 seizures over 43 days were recorded. The starting
and the ending time points of seizure onsets were determined by experts.

Subdural electrode stripsare
placed over:

left orbitofrontal (LOF)

right orbitofrontal (ROF)

|eft subtemporal (LST)

right subtemporal (RST) cortex

Depth electrodes are placed in:
left temporal depth (LTD)
right temporal depth (RTD)

Figure 1 The interior transverse view of the brain and the placement of the 26 EEG
electrodes.

2.2 Data Preprocessing & Feature Extraction

Many feature extraction techniques have been developed to analyze EEG signals,
such as time-domain analysis, frequency-domain analysis, time-frequency analysis,
and spatial-temporal analysis. A comprehensive review of various EEG processing



Table 1 Summary of the Analyzed EEG Data

Patient Number Duration  Number Seizure

of of EEG of Rate
Electrodes (days) Seizures  (per
hour)
1 26 3.55 7 0.082
2 26 8.85 22 0.104
3 26 13.13 17 0.054
4 26 6.09 23 0.157
5 26 11.53 20 0.061
Total 43.15 89

methods can be found in Stam (2005). Since EEG signals are highly nonstationary
and seemingly chaotic, there has been an increasing interest in analyzing EEG
signals in the context of chaos theory according to Rapp et al. (1989). Chaos theory
provides effective quantitative methods to measure EEG dynamics and discover
the underlying chaos in the data.

Several chaotic measures are commonly used in recent EEG literature, such
as correlation dimension in Silva et al. (1999), largest Lyapunov exponent in
Tasemidis et al. (2003), Hurst exponent in Dangel et al. (1999) and entropy in
Quiroga et al. (2000). Among such measures, Lyapunov exponent, the average rate
of divergence of two neighboring trajectories in phase space, is often considered
as the most basic indicator of deterministic chaos (Vastano and Kostelich (1986)).
Lyapunov exponents supply a direct measure of the degree of sensitivity to initial
conditions for a dynamical system. For a n-dimensional dynamical system, there
are n different Lyapunov exponents, \;. They measure the exponential rate of
divergence of the different trajectories in the phase space. If one of the exponents
is positive, it indicates that the two corresponding orbits defined by that exponent
diverge exponentially. The magnitude of the exponents indicates the degree of
divergence. It has been shown that the chaotic behavior of a dynamical system is
usually sufficient to be characterized by the largest Lyapunov exponent instead of
all the exponents. The largest Lyapunov exponent has been shown to be reliable
and reproducible in Vastano and Kostelich (1986).

In our previous studies, an estimation algorithm called short-term largest
Lyapunov exponent (ST Lj,..) was developed to quantify EEG dynamics in
Tasemidis et al. (2000). Along this line of research, we also employ ST L,,q. to
characterize raw EEG data in this study. The calculation of STL,,q,; can be
briefly described as follows. The initial step is to embed each channel of EEG
signal in a p-dimensional phase space, and construct p-dimensional vectors X (t;) =
(x(t;),z(t; + 1), .., x(t; + (p — 1)7), where t; is the time point, 7 is the selected
time lag between the components of each vector in the phase space, and p is
the selected dimension of the embedding phase space. Define N the number of
local ST Ly,qzs that will be estimated within a duration 7' data segment, then the



6 S. Wang, W. Chaovalitwongse, and S. Wong

largest Lyapunov exponent is defined as the average of local Lyapunov exponents
L;; in the phase space as follows:

1
STLmar = ;- ZN:LU, (1)

and the local Lyapunov exponents L;; is defined by:

1 X(t + At) — X(t; + At)

SR (S (N @

where At is the evolution time for the vector difference 6X; ;(0) =|X(t;) —
X(t;)| to evolve to the new difference §X; ;(At) = |X(¢t; + At) — X (¢; + At)].
More details of the estimation of ST L;,,, can be found in Iasemidis (1991).

2.8 Adaptive Seizure Prediction Framework

The proposed adaptive seizure prediction framework is illustrated in Figure 2. The
continuous multichannel EEG data were analyzed by a sliding moving window.
The window had a size of 10 min and moved with a 50% overlap each step. Two
baselines of normal and pre-seizure states were constructed to classify the window-
EEGs using a KNN method. All the baseline samples and window-EEGs were
represented in terms of multichannel time profile of ST L,,,.s. Based on prediction
feedbacks (correct or incorrect), the two baselines were updated according to
a reinforcement learning procedure. The adaptive seizure prediction system is
discussed in detail in the following.

2.3.1 Baseline Construction & Initialization

To start our prediction system, we need to initialize the pre-seizure and normal
baseline samples. The selection of baseline samples highly depends on the
presumed time length of pre-seizure period, which is often used as prediction
horizon in seizure prediction literature. So far little is known to define pre-seizure
duration, which has been reported between a few minutes and several hours prior
to seizure onsets. The prediction horizon for epileptic seizures is still an open
question in epilepsy research. In this study, we tried three prediction horizons,
which are 30 min, 90min, and 150min, respectively. If we denote the prediction
horizon at H minutes, then the EEG recordings can be divided into the following
three periods:

e Pre-seizure period: 0-H min preceding a seizure onset.
e Post-seizure period: 0-20 min after a seizure onset.
e Normal period: between pre- and post-seizure periods.

The post-seizure period was set at 20 minutes based on the observations of
the EEG recordings. The EEG signals generally recovered to normal patterns 20
minutes after the seizure onsets in all the five patients. In addition, the initial
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Figure 2 Schematic structure of the adaptive prediction system.
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samples of the two baselines were randomly chosen from the normal and pre-
seizure period preceding the first seizure onset. The length of the baseline samples
is equal to that of the moving window. Since there is no guideline available to
determine the number of samples in each baseline, we tentatively stored a fixed
number of 50 samples in each baseline.

2.3.2 KNN Similarity Measure

With baselines for normal and pre-seizure states, it is intuitive and practical for
physicians to decide the class of a window-EEG based on its degree of similarity
between the two baselines. For this purpose, KNN is the best choice because it
classifies a new unlabeled sample by comparing it with all the samples of the two
baselines. Thus, we employed KNN method to find the K best matching samples
in each of the two baselines and compare them to make a decision.

A KNN method has to use similarity measures to quantify the closeness
between a moving-window EEG and baseline samples. We employed three
frequently used similarity measures for time series data. If we denote two time
series of ST L4 as X and Y with equal length of n, then the three types of
distances are briefly described as follows.

e Euclidean distance (EU): EDgy, = Y20, (2 — yp)*/n.
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o T-statistical distance (T'S): T'S,, = ZZ=1 |zp — Ypl/v/NTx—y|, Where T|x _y|
is the sample standard deviation of the absolute difference between the time
series X and Y.

e Dynamic time warping (DTW): DTW measures similarity based on the best
possible alignment or the minimum mapping distance between two time
series. A detailed calculation of DTW can be found in Senin (2008).

Once a similarity measure is chosen, the distance between a window-EEG and
a baseline sample, denoted as window-sample distance, can be obtained as follows:

M

dp'r‘e,i = Z diStance(SIJ)re,w San)a (3)
j=1
M

dint,i = Z distance(Sgnt)i, Sa ), (4)
j=1

where M =26 is the number of EEG channels. S’ . and S’

pre,i wnt,t

is the jth channel

of the ith pre-seizure and normal baseline sample, respectively; ng;,i is the jth
channel of the window-EEG epoch. dp,e; and d;n; denote the distance between
the window-EEG and the ith sample in the pre-seizure and normal baseline,
respectively. The term distance in the above formula represents a time series

distance measure, which can be EU, TS, or DTW in this paper.

2.3.3 KNN Prediction Procedure

Four choices of K were employed, which were three, seven, half, and all of the
baseline samples, respectively. For a specific value of K, the weighted summation
of K nearest window-sample distances in a baseline was considered as the distance
between the window-EEG and that baseline. We call the two distances as window-
normal distance and window-preseizure distance, respectively. For each window-
EEG, its distances to the two baselines can be calculated as follows:

K

Df’re = Z akdpre,ky (5)
k=1
K

DE, = Bidint.r, (6)
k=1

where D{fre and DX, are the window-preseizure distance and window-normal
distance, respectively. dprer and diner are the window-sample distances of the
kth sample of the K nearest neighbors in the pre-seizure and normal baseline,
respectively. ap and (5 are the weights of the kth sample in the pre-seizure and
normal baseline, respectively; In the beginning, the initial weights of all baseline

samples were equal, which are given by:

aizﬂizf,i:]-v"'ana (7)
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n=>50 is the number of samples in each baseline. We assume that different baseline
samples may have different power in decision-making. The ‘importance’ of a
baseline sample can be represented by a weight associated it. The weights of the
baseline samples are updated through a gradient-based learning rule which will be
discussed in a later part of this paper.

Once the two baseline-window distances are obtained, the prediction decision
can be made by:
1, if DE /DX, < h (trigger a warning),

pre int

predictor = {0, otherwise (no warning),

where the threshold h =1 by default. The schematic structure of the KNN
prediction rule is illustrated in Figure 3.

dpre,1
> Select K

Tered | Nearest
Neighbo
rs

Pre-seizure
Baseline

K
K
: me - Zakdprc,k
dint,n k=1

K K .. -
Ipo,ﬁ <D, trigger awarning
Otherwise, no warning.

dint,1

Normal dint,2
Baseline o

Multichann
STLmax

Select K
Nearest
Neighbo
rs

>
>

K
Di]r:x = Z ﬂkdim,k
k=1

dp}e,n
——

Figure 3 A demonstration of the KNN-based prediction rule.

2.8.4 FEwaluation of a Prediction Result

If the prediction horizon is H min, then the feedback of each prediction outcome
can be classified into one of the following four categories:

e True positive (TP): if predictor =1 and a seizure occurs within H minutes
after the prediction.

e False positive (FP): if predictor = 1 and no seizure occurs within H minutes
after the prediction.

e True negative (TN): if predictor = 0 and no seizure occurs within H minutes
after the prediction.

e False negative (FN): if predictor = 0 and a seizure occurs within H minutes
after the prediction.

The concept of the prediction evaluation is also illustrated in Figure 4 for a
better explanation. Based on this definition, we can evaluate a prediction result by
identifying its corresponding category. Accordingly, the baselines will be updated
based on the categorical prediction evaluations. In the following, the adaptive
learning mechanism will be presented.



10 S. Wang, W. Chaovalitwongse, and S. Wong

Prediction Outcome
pre-seizure  normal

pre-seizure TP FN
normal FP N

Actual

Figure 4 The categorization of a prediction outcome. Each prediction outcome can
be categorized into one of the four subsets.

2.8.5 Gradient-Based Weight Update Rule

The flowchart of the baseline update framework from delayed prediction feedback
is illustrated in Figure 5. Let r € (0,1) denote the learning rate to control the
update size for the weights, then the gradient-based weight update rules are
represented as follows:

e For cases of TP & FN, the weight update rule is:

ai:ai(lfm) T, (8)
dpre
dirs: —d.
Bi = Bi(l+ 7’"% LY X (9)
int

e For cases of FP & TN, the weight update rule is:

d re,t d re
a; = o1+ 2L P8 oy, (10)
dp'r‘e
B; = Bi(1 — 76”"%_ dinty s, (11)
int

where Vi =1,2,...,n, dpre = Y1y dprei/n, and ding = D1 dinti/n

Since the above update rule cannot guarantee that the summation of the
sample weights in one baseline equals to 1, we normalized the obtained new weight
vectors after each update as follows:

o= a/Zai, (12)

8= B/Zﬂi- (13)

2.4 Baseline Sample Update Rule

After each weight update, the weights of ‘good’ samples are increased while
the weights of ‘bad’ samples are decreased by the gradient-based weight update
method. The weights indicate the ‘importance’ of the corresponding baseline
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Figure 5 An Illustration of the gradient-based updating framework.

samples. If the weight of a sample is large, it means that the sample is important in
prediction. While if the weight of a sample is small, it may disclose that the sample
mainly plays a negative role in the past predictions and become less important. It
is a natural method to update the baselines by replacing the low-weighted samples
with moving-window EEGs. In this study, the update rule of baseline samples is
based on the categorical prediction evaluations as follows:

e TP (correctly predict a pre-seizure window-EEG as pre-seizure): If the
minimum weight in the pre-seizure baseline falls below a critical minimum
value Wpin, defined as 1/10 of the initial weight value(1/n) in this study,
then replace the corresponding pre-seizure baseline sample with the window-
EEG.

e TN (correctly predict a normal window-EEG as normal): If the minimum
weight in the normal baseline falls below the critical minimum value w,in,
then replace the corresponding normal baseline sample with the window-
EEG.

e FP (incorrectly predict a normal window-EEG as pre-seizure): Use the
window-EEG to replace the normal baseline sample which has the largest
sample-window distance.

e FN (incorrectly predict a pre-seizure window-EEG as normal): Use the
window-EEG to replace the pre-seizure baseline sample which has the largest
sample-window distance.

Once a replacement is made, an initial weight has to be assigned to the new
baseline sample. For example, the baseline sample i is replaced, then the initial
weight a; of the new baseline sample is given by:

(1 —a;n)
Pt . 14
o o + — (14)
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To make the summation of all the weights equal to 1, a normalization step is
also performed subsequently by

@
o —. (15)
(I—ayn)
1+ ngln
After normalization, the weight of the new baseline sample is scaled to 1/n,
while the relative relationship of the weights for all other baseline samples keeps
unchanged.

2.5 Fuvaluation of Prediction Performance

Time Block-Based Sensitivity and Specificity: We label the continuous EEG by
a series of time blocks. The length of each block is equal to the length of the
prediction horizon (H min). In particular, the pre-seizure periods were defined
as pre-seizure time blocks. The normal period between two seizures were divided
into a number of equal-sized normal time blocks with a length of H min. The
prediction outcome of each time block can be categorized into one of the following
four subsets:

e TP-block: a pre-seizure time block with at least one warning within the
block.

e TN-block: a normal time block with no warning.
e FP-block: a normal time block with at least one warning within the block.
e F'N-block: a pre-seizure time block with no warning.

Then the time block-based sensitivity and specificity are defined as follows:

sem — number of TP-blocks (16)
Y% 7 humber of pre-seizure time blocks’
number of TN-blocks

number of normal time blocks’

Spepik = (17)
The time block-based sensitivity and specificity are more suitable to evaluate
prediction performance than the traditional definition of sensitivity and specificity,
since they consider the effects of prediction horizon for online seizure prediction.

Receiver Operating Characteristic (ROC) Analysis: Based on sensitivity and
specificity, a common method in comparing the performance of a predictive model
is to use the ROC curve. The ROC curve is a plot of sensitivity versus false alarm
rate (1-specificity) as the discrimination setting of a classifier is varied. The ROC
curve for a perfect prediction model is the line connecting [0, 0] to [0, 1] and [0,
1] to [1, 1]. And the diagonal line connecting [0, 0] to [1, 1] is the ROC curve
corresponding to a random model. Generally, a ROC curve lies between these
two extreme lines. The area under the ROC curve (AUC) is often used as an
important metric to evaluate a prediction model. The AUC is an overall summary
of prediction accuracy across the spectrum of its decision-making values. AUC
values are usually between 0.5 and 1. The AUC of a perfect predictor is 1 while a
purely random chance model has an AUC of 0.5 on average. The higher the AUC
value is to one, the better prediction power it indicates.
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3 Results

3.1 Prediction Performance based on senyy, and spep

We tested the proposed adaptive prediction framework on the EEG recordings
from five patients with epilepsy. Table 2 summarizes the seny; and spep; of the
adaptive prediction system with the best parameter settings. The results showed
that the seny was ranged from 57.89% (Patient 5, 30 min) to 100.00% (Patient
1 at 90 & 150 min, Patient 3 at 90 min), and the spey;, was ranged from 37.04%
(Patient 3 at 90 min) to 78.22% (Patient 2 at 30 min). The best averaged accuracy
was achieved at 70.60% using the prediction horizon of 150 min. The averaged
prediction accuracies over the three prediction horizons were 69.99%, 67.50%, and
70.60%, respectively. In contrast with the adaptive framework, a Poisson random
predictor was also tested. The Poisson predictor randomly triggered a warning
alarm with a mean interval of A minutes. We tested different values of A and
obtained similar prediction performances. As an example, the performance of the
Poisson predictor with A=60 min is shown in Table 3.

After comparing the prediction results, one can see that the proposed adaptive
scheme achieved better prediction performance than the Poisson random predictor.
The adaptive scheme achieved an overall accuracy of over 65%, while the random
predictor only had an overall prediction accuracy around 50%. Moreover, we also
notice that the adaptive prediction scheme generated consistent good results in
terms of sensitivity and specificity for different prediction horizons. In each case,
both of the sensitivity and specificity are larger than 50%. However, the random
predictor generated very poor and unbalanced sensitivity and specificity, especially
when using long prediction horizons.

Table 2 The summary of seny;, and spep, obtained by the adaptive learning
predictor with the best parameter settings. The KNN classification method
employed four choices of K: 3, 7, half, and all; and three distance measures:
EU, TS, and DTW.

Patient 30min 90min 150min
Sen. Spe. Setting Sen. Spe. Setting Sen. Spe. Setting
1 83.33% | 64.75% | 3-EU | 100.00% | 52.94% | hall-DTW | 100.00% | 72.22% | half-EU
2 66.67% | 78.22% | all-EU | 66.67% | 46.38% | allDTW | 66.67% | 48.72% all-TS
3 62.50% | 67.65% | all-EU | 100.00% | 37.04% all- EU 87.50% | 75.00% | half-EU
4 76.47% | 66.53% | 3-TS 82.35% | 60.29% 7-EU 88.24% | 55.26% | all-EU
5 57.89% | 75.90% | 3-TS 73.68% | 55.65% | halDTW | 63.16% | 49.25% | alllDTW
Ave. 69.37% | 70.61% - 84.54% | 50.46% - 81.11% | 60.09% -
Accuracy 69.99% - 67.50% - 70.60% -

3.2  Receiver Operating Characteristic Analysis

We employed ROC analysis to further investigate whether the proposed gradient-
based updating scheme did improve the prediction power of the system. Instead
of a random predictor, we compared the adaptive system with the non-updating
system which kept the initial baselines unchanged. Figure 6 plots the averaged
AUC values over the five patients for 36 parameter settings (4 choices of K x
3 distance measures x 3 prediction horizons). One can observe that the AUC
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Table 3 The summary of senpix and spepr, obtained from a Poisson random
predictor with a mean interval of 1 hour.

Prediction Horizon 30 min 90 min 150 min
Patient sen. spe. sen. spe. sen. spe.

1 52.00% | 39.00% | 100.00% | 2.10% | 100.00% | 0.44%

2 58.67% | 39.33% | 98.67% | 0.53% | 97.33% | 0.55%

3 51.00% | 40.63% | 99.00% | 1.38% | 100.00% | 0.89%

4 48.47% | 40.39% | 92.47% | 1.47% | 94.12% | 0.56%

5 54.11% | 40.24% | 99.79% | 0.99% | 100.00% | 0.30%

Ave. 52.85% | 39.92% | 97.99% | 1.29% | 98.29% | 0.55%
Accuracy 46.38% 49.64% 49.42%

values of the adaptive prediction scheme are generally larger than those of the
non-updating system. Compared with the non-updating scheme, 34 (out of 36)
parameter settings of the adaptive schemes increased the AUC values of the
prediction system. In other word, the ROC analysis indicated that the gradient-
based learning framework did improve the prediction power of the system. For the
adaptive system, the averaged AUC value across 36 settings is 0.60, which is 15%
larger than that of the non-updating system.

0.8
Adaptive
=®= No Update

075} 30 min 90 min 150 min 4

- S g
V- E AUC (adaptive)=0.6

AUC (no update)=0.52

| 1 1
5 20 25 30 35 40

The 36 combinations of parameter settings.

(4 choices of K x 3 distance measure x 3 prediction horizons)

0.4 g L
[} 5 10

Figure 6 Comparison of the gradient-based self-updating system and the
non-updating system in terms of the AUC values, which were averaged over
the five patients for each parameter setting. The averaged AUC values across
36 parameter settings were 0.60 and 0.52 respectively for the adaptive and
non-updating system.

4 Conclusions

In this paper, we studied the open problem of online seizure prediction based on
multichannel EEG data. A gradient-based adaptive seizure prediction framework
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was proposed. The adaptive seizure prediction method combined the reinforcement
learning concept, online monitoring and adaptive control to autonomously capture
the most prominent normal and pre-seizure EEG samples for each individual
patient with epilepsy. Starting from the initial normal and pre-seizure baselines,
the adaptive updating scheme allows the system to incorporate more and more
representative samples and abandon the ’bad’ samples in the baselines as the
system learns more about a patient. Our experimental results showed that
the adaptive prediction scheme could achieve a consistent better prediction
performance than a chance model and the non-updating system. The proposed
adaptive updating scheme did improve the prediction power of the system. It is
noticed that there are only 7 to 23 seizures to train the learning system based on
the available EEG recordings. We anticipate that the performance of the proposed
reinforcement learning prediction system could be further improved when longer
EEG data are available.

The outcome of this study confirmed that the concept of using adaptive
learning algorithms to improve the adaptability of seizure prediction is conceivable.
A perspective clinical valid seizure prediction system definitely requires both high
sensitivity and specificity. If such a seizure warning device is ever to become
a reality, adaptive learning techniques will definitely play an important role in
handling the great variety of the brain-wave patterns. The long-term goal of this
research is to design intelligent machine-learning interfaces that could adaptively
predict abnormal mental states for patients with brain diseases. Hypothetically,
this prediction system could eventually take the form of an implanted ‘brain
pacemaker’, stimulating the brain to prevent the seizure from happening in its
very early stage. We are confident that the adaptive prediction schemes will have
a great potential to function well for a wide range of patients.
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