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Online Seizure Prediction Using an Adaptive
Learning Approach

Shouyi Wang, Member, IEEE, Wanpracha Art Chaovalitwongse, Senior Member, IEEE, and

Stephen Wong

Abstract—Epilepsy is one of the most common neurological disorders, characterized by recurrent seizures. Being able to predict

impending seizures could greatly improve the lives of patients with epilepsy. In this study, we propose a new adaptive learning

approach for online seizure prediction based on analysis of electroencephalogram (EEG) recordings. For each individual patient, we

construct baseline patterns of normal and preseizure EEG samples, continuously monitor sliding windows of EEG recordings, and

classify each window to normal or preseizure using a K-nearest-neighbor (KNN) method. A new reinforcement learning algorithm is

proposed to continuously update both normal and preseizure baseline patterns based on the feedback from prediction result of each

window. The proposed approach was evaluated on EEG data from 10 patients with epilepsy. For each one of the 10 patients, the

adaptive approach was trained using the recordings containing the first half of seizure occurrences, and tested prospectively on the

subsequent recordings. Using a 150-minute prediction horizon, our approach achieved 73 percent sensitivity and 67 percent specificity

on average over 10 patients. This result is shown to be far better than those of a nonupdate prediction scheme and two native

prediction schemes.

Index Terms—Adaptive online seizure prediction, reinforcement learning, time series pattern recognition

Ç

1 INTRODUCTION

EPILEPSY is one of the most common neurological
disorders, affecting approximately 1 percent of the

world’s population [15]. Epileptic seizure onset is often
considered as an abrupt, unpredictable phenomenon. The
unpredictability of seizures represents a significant source
of morbidity in patients with epilepsy. Patients with
epilepsy frequently suffer from seizure-related injuries
due to loss of motor control, loss of consciousness, or
delayed reactivity during seizures [37]. Current technology
has yet to reach a point where epileptic patients can be
warned by an automated system to predict seizure onsets.
One crucial question in seizure prediction is whether an
identifiable, specific, preseizure state exists. Over the recent
years, there has been accumulating evidence indicating
that a transitional preseizure state does exist prior to
seizure onsets [20], [29], [41], [35], [30], [5], [7]. The
majority of the quantitative evidence supporting the
existence of a preseizure state is derived from EEG

analyses. In the literature, seizure prediction algorithms
are generally designed to capture some specific EEG
features to analyze precursors of imminent epileptic
seizures. Examples of published features include dynami-
cal entrainment [23], [17], correlation dimension [28],
dynamic similarity index [41], accumulated energy [32],
phase synchronization [34], and wavelet and median
filtering [36]. Iasemidis et al. [20] noted premonitory
preseizure changes based on the analysis of dynamical
entrainment. Lehnertz and Elger [29] showed that the
correlation dimension decreases prior to seizures. Quyen et
al. [41] reported a reduction in the dynamical similarity
index before seizure occurrence. Mormann et al. [35]
observed that there was a relative decrease of signal power
in the delta band of the EEG up to hours prior to seizure
onsets. They also demonstrated statistically significant
discrimination between preseizure and normal brain states.
In our previous study, Chaovalitwongse et al. [5] investi-
gated the EEG characteristics of preseizure transition and
found that the probability of detecting preseizure transition
was as high as 83 percent using the optimized critical EEG
channels. In a later study, we built a network-based
approach to study the evolution of epileptic seizures by
investigating the EEG synchronization among different
brain areas. The evolutional changes of the network
structure hours prior to seizure onsets indicated that the
seizures may slowly develop by an evolutional epilepto-
genic process instead of an abrupt change [7]. Recently,
Feldwisch-Drentrup et al. [16] investigated the possibility
of combining different seizure prediction algorithms and
different EEG features to improve prediction accuracy.
Using Boolean operations, they showed the different
prediction methods with different EEG features can be
combined and can generate significant better performance
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than each individual method. In particular, they found that
sensitivity can be markedly improved by combining
dynamic similarity index [41] and phase synchronization
[34], given a fixed maximum false prediction rate (FPR).

Although there have been extensive studies that develop
the state-of-the-art seizure prediction algorithms to support
the existence of the preseizure state [23], [28], [41], [32], [10],
[34], [36], prospective seizure prediction from EEG remains
a challenging problem. Computational analysis of most
studies in the literature are focused on retrospective
analyses of EEG recordings, which in turn only address
the predictability of epileptic seizures rather than the
prediction. A significant challenge of seizure prediction is
the high intraindividual variability of epileptic seizures
with a variable degree of success [22]. Although many
nonadaptive methods for retrospective analyses have
achieved promising results, this variability makes it difficult
to develop a universal robust predictor to accurately predict
seizures for a wide range of patients with different seizures.
This variability also highlights the emerging need for an
automated adaptive approach for epileptic seizure predic-
tion. A number of adaptive seizure prediction algorithms
have been proposed to account for the high inter- and intra-
individual variability of epileptic seizures [22], [23], [45],
[42], [8]. Iasemidis et al. [22], [23] and Sackellares et al. [45]
developed optimization-based prediction algorithms, which
based on dynamical synchronization in the human epileptic
brain, adaptively selects a group of critical EEG electrodes
to predict impending seizures. More recently, Iasemidis’s
group published similar results, with high sensitivity and
specificity, and long warning times prior to seizures on
prospective seizure prediction in rodents with chronic
epilepsy [17]. Rajdev et al. [42] also proposed an adaptive
prediction algorithm based on a Wiener implementation of
autoregressive (AR) modeling, which was tested on rats. A
warning was issued if the prediction errors over a moving
window exceeded a threshold. The threshold was con-
tinuously updated online, and it was optimized to max-
imize the sensitivity and latency, while minimizing the FPR.

The above-mentioned adaptive seizure prediction ap-
proaches are generally based on an adaptively optimized
set of EEG channels [22], [23], [45] or an adaptive threshold
[42]. In principle, these approaches employed the prediction
settings optimized by one or several recently occurred
seizures to predict the next seizure. Due to the high
intraindividual variability of epileptic seizures, the char-
acteristics of the EEG patterns of the next seizure may
become quite different from those of its preceding ones. The
current adaptive approaches actually do not make full
use of the whole monitored EEG recordings, and thus
have problems to deal with the challenging problems of
high intraindividual variability of seizures in prediction.
Therefore, it is extremely important for a prediction system
to accumulate more and more knowledge of predictive
patterns over time instead of only holding “short-term
memories”. In this study, we develop an automated
adaptive learning approach for online seizure prediction.
The approach is based on quantitative EEG analysis, time
series classification, and reinforcement learning. For each
individual patient, after the first seizure in the EEG

recording, the approach will construct baseline EEG
patterns from normal period and preseizure period. Then
our approach continuously monitors and classifies sliding
windows of EEG recordings as normal or preseizure based
on a K-nearest-neighbor (KNN) rule to classify each EEG
window to the most similar baseline patterns. Our approach
in turn uses a gradient-based reinforcement learning
algorithm to continuously update both normal and pre-
seizure baseline patterns based on the feedback of true or
false prediction. This study is among the first to investigate
the use of adaptive learning in seizure prediction [22], [45],
[18], [42]. Its framework can be applied to other online
monitoring problems such as network intrusion detection
and production process control.

The remainder of this paper is organized as follows: In
Section 2, the background and previous related work are
discussed. The data collection, feature extraction, the
adaptive seizure prediction approach, and the evaluation
metrics of prediction performance are presented in Section 3.
The experimental results are provided and discussed in
Section 4, and we conclude this paper in Section 5.

2 BACKGROUND AND RELATED WORKS

2.1 Overview of Machine Learning Techniques

With the explosion of computing power in the past decade,
machine learning and pattern recognition techniques have
become important tools in the analysis of various biological
problems, such as cancer research [31], cognitive neu-
roscience [12], and genomics and proteomics [9]. Machine
learning best depicts the computational methods that allow
a system to evolve behaviors through an automated process
of knowledge acquisition from empirical data. Machine
learning techniques generally fall into three broad cate-
gories: supervised learning, reinforcement learning, and
unsupervised learning. A supervised learning technique
usually first finds a mapping between inputs and outputs
of a training data set, and then makes predictions for inputs
that it has never seen. A large number of supervised
learning algorithms have been developed that can be
categorized into several major groups, including neural
networks, support vector machines, locally weighted
learning, decision trees, and Bayesian inference [26].
Reinforcement learning is another learning paradigm in
which an agent is able to learn a decision policy by “trial
and error”. A reinforcement learner receives feedback of its
actions and makes adjustments to its actions accordingly
[50]. Reinforcement learning is a natural framework for
building models to accumulate knowledge from previously
learned tasks to new tasks with increasing complexity and
variability. Reinforcement learning techniques have been
applied to many complex learning tasks, such as robot
control [14] and traffic network control [44]. Unsupervised
learning is inspired by the brain’s ability to recognize
complex patterns of visual scenes, sounds, or odors. It takes
root in neuroscience/psychology and is established on the
basis of information theory and statistics. An unsupervised
learner usually performs clustering or associative rule
learning to extract the implicit structure of a given
data set. The established clusters, categories, or associative
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networks are then used for decision-making, prediction, or
efficient communication [13].

2.2 EEG Analysis for Epileptic Seizures

Most seizure prediction methods are based on quantitative
analysis of the EEG, and can be broadly categorized into
univariate and multivariate analysis, respectively.

Univariate analyses focus on the features of each single
channel of EEG. Based on the morphological characteristics
of EEG, Lange et al. [27] reported that there were
consistent changes in EEG spike activity prior to seizures.
With the help of advanced signal processing methods,
more complex univariate EEG feature extraction techni-
ques have been developed for seizure prediction. Litt et al.
[32] introduced signal energy variations to seizure predic-
tion, and reported EEG changes hours before seizure
onsets. The autoregressive (AR) and autoregressive mov-
ing average (ARMA) models have also been utilized for
seizure prediction. Characteristic changes of AR/ARMA
coefficients before seizure onsets were reported in [46], [8].
Nonlinear measures based on chaos theory have drawn
considerable attention in EEG studies of brain activity. The
two well-known nonlinear chaotic measures that have
been applied in seizure prediction are the Lyapunov
exponent and correlation dimension. Iasemidis et al. [22]
monitored the evolution of Lyapunov exponents extracted
from EEG data. They designed an adaptive prediction
scheme that attempted to select the most informative
channels to predict an impending seizure with optimiza-
tion techniques. Channel selection was adjusted after every
seizure since it was assumed that the preseizure dynamics
may change from seizure to seizure over time. Lehnertz
et al. [28] investigated the feasibility of seizure prediction
based on transitions of correlation dimension, a feature
that is considered as an index of neuronal complexity.

Multivariate analyses take more than one channel of EEG
into account simultaneously rather than only looking at
each channel individually. The most influential multivariate
analysis methods in seizure prediction are phase synchro-
nization and dynamical entrainment. Quyen et al. [40] used
phase synchronization to distinguish preseizure features
from normal state. They compared the normal synchroniza-
tion patterns taken from 3 to 10 hours before seizures with
the preseizure patterns taken from 30 minutes before
seizures. The variables that achieved best discriminating
performance were chosen for each individual patient.
Mormann et al. [34] designed a seizure prediction scheme
based on their finding that the degree of synchronization
may decrease up to hours prior to seizure onsets. Iasemidis
et al. [23] explored the effectiveness of a method called
dynamical entrainment, which estimated the difference of
the largest Lyapunov exponents from any two observed
time series of EEG. A progressive convergence of the
dynamical entrainment was considered as sign of transition
from normal to preseizure states.

Our group has made extensive EEG studies to investi-
gate the classifiability of the brain’s preseizure and normal
states [6], [2], [3], [4]. Our classification model achieved a
testing accuracy of over 70 percent on average. The
experimental results indicate that it may be possible to
design and develop seizure warning algorithms for diag-
nostic and therapeutic purposes.

2.3 Related Work in Seizure Prediction and
Challenges

In the 1970s, accumulating evidence from clinical practice
suggested that epileptic seizures might be predictable.
Viglione and Walsh started a project to investigate the
predictability of seizures based on EEG data [52]. Iasemidis
et al. pioneering work started in the 1980s [24], [25], [21].
Since then, many studies have been carried out aiming to
predict epileptic seizures.

Most current seizure prediction methods involve two
steps. First, univariate or multivariate EEG features are
extracted from a sliding window. Then each EEG epoch in
the moving window is classified as either preseizure or
normal based on an optimized threshold level. Whenever a
windowed EEG epoch is classified as a preseizure, a warning
alarm is triggered indicating that an impending seizure may
occur within a predefined prediction horizon. Although
some methods have shown promising results for selected
patients, the reliability and repeatability of the results have
been questioned when tested on other EEG data sets. Many
of the earlier optimistic findings were irreproducible or
achieved poor performance in extended EEG data sets [1].
This is not surprising since the optimal threshold obtained
from a limited number of patients may not be generalizable.
Manually tuning a threshold level for each individual patient
is a subjective procedure and would pose a significant
burden on physicians and patients. The inability to apply
these techniques to a wide spectrum of epileptic patients
with a variety of types of epileptic seizures may represent the
greatest limitation of current seizure prediction methods.

Given our accumulated knowledge regarding seizure
prediction, we conjecture that a promising approach may be
the one that processes adaptive learning ability and is
capable of achieving personalized seizure prediction auton-
omously. The flowchart of a prospective adaptive seizure
prediction system is illustrated in Fig. 1. In this study, we
attempted to construct an adaptive prediction system using
machine learning algorithms. We developed a novel
adaptive learning approach, which combines reinforcement
learning, online monitoring, and feedback control theory
into an online seizure prediction system. The proposed
adaptive seizure prediction approach can be readily
integrated to any clinical EEG system. With the attractive
adaptive learning ability, the proposed approach is capable
of achieving a personalized seizure prediction through
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Fig. 1. A prospective adaptive seizure prediction system, which can be
adjusted to each individual patient automatically based on feedbacks.



baseline updating as it monitors more and more EEG
recordings from a patient.

3 MATERIALS AND METHODS

3.1 Data Collection

In this study, we used a data set containing long-term
continuous intracranial EEG recordings from 10 epileptic
patients with temporal lobe epilepsy. The placement of the
EEG electrodes is shown in Fig. 2, which is a modified
image of the inferior transverse view of the brain from
Potter [38]. The EEG recordings consist of 26 standard
channels. Recording durations ranged from 3 to 13 days.
Expert epileptologists annotated the EEG recordings to
determine the number of seizures, their onset, and their
offset points. The characteristics of the 10 patients and the
EEG data statistics are outlined in Table 1.

3.2 Data Preprocessing and Feature Extraction

Since EEG signals are highly nonstationary and seemingly
chaotic, there has been an increasing interest in analyzing
EEG signals in the context of chaos theory [43]. Several
commonly used chaotic measures in many recent studies
include the largest Lyapunov exponent [22], correlation
dimension [48], Hurst exponent [11], and entropy [39].
Among these EEG measures, the Lyapunov exponent has
been shown to be useful in characterizing a chaotic system
[51]. The Lyapunov exponents measure the degree of
sensitivity to initial conditions for a dynamical system.
For an n-dimensional dynamical system, there will be n
corresponding Lyapunov exponents that measure the

exponential rate of divergence of the different trajectories
in the phase space. If an exponent is positive, it indicates
that the corresponding orbits locally defined by that
exponent diverge exponentially. The magnitude of the
exponents indicates the degree of divergence. The largest
Lyapunov exponent in a chaotic system is usually more
reliable and reproducible than the estimation of all
the exponents [51], and is an important indicator to
characterize a chaotic system. In our previous studies, we
used an estimation algorithm called the short-term largest
Lyapunov exponent (STLmax) to quantify EEG dynamics
[22]. We employed this measure in the current study. A
detailed calculation of STLmax as well as parameter
selection and variation of STLmax has been explained by
Iasemidis in [19].

3.3 Adaptive Seizure Prediction Approach

The schematic structure of the proposed adaptive seizure
prediction system is illustrated in Fig. 3. A sliding window
was applied to monitor continuous multichannel EEG data.
The window size is 10 minutes with 50 percent overlap
between two successive windows. Two baselines of normal
and preseizure states were constructed and initialized by
the beginning part of the EEG recordings for each patient.
The two baselines were used to classify the monitored EEG
epochs of the sliding moving window using a K-nearest-
neighbor (KNN) method. All the baseline samples and
windowed EEG epochs were represented in terms of the
multichannel time profile of STLmax values. The two
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Fig. 2. The interior transverse view of the brain and the placement of the
26 EEG electrodes.

TABLE 1
Characteristics of EEG Data

Seizure types: CP, complex partial; SC, subclinical; GTC, generalized
tonic/clonic.

Fig. 3. Schematic structure of the adaptive prediction system.



baselines were updated by a reinforcement learning
algorithm based on feedbacks of prediction actions (true
or false). The adaptive seizure prediction system is
discussed in detail in the following.

3.3.1 Baseline Construction and Initialization

To start our prediction system, we first initialize the
preseizure and normal baseline samples. The selection of
baseline samples depends on the presumed time length of
preseizure period, which is often considered the prediction
horizon in the seizure prediction literature. The preseizure
duration has been reported to be between a few minutes
and several hours prior to seizure onset, and remains an
open question in epilepsy research. In this study, we tried
three prediction horizons (30, 90, and 150 minutes). For
convenience, we denote the length of the prediction horizon
as H minutes, then the EEG recordings can be divided into
the following three periods:

. Preseizure period: 0-H minutes preceding a seizure
onset.

. Postseizure period: 0-20 minutes after a seizure onset.

. Normal period: between pre- and post-seizure periods.

The initial samples of the two baselines were randomly
chosen from the normal and preseizure period preceding
the first seizure onset. The length of the baseline samples is
equal to that of the moving window. Since there are no
guidelines available to determine the number of samples in
each baseline, we tentatively stored a fixed number of
50 samples in each baseline.

3.3.2 KNN Prediction Procedure

With baselines for normal and preseizure states, it is intuitive
to classify a windowed EEG epoch based on its degree of
similarity to the two baselines. For this purpose, KNN is a
reasonable choice because it classifies a new unlabeled
sample by comparing the sample with all the samples in the
two baseline sets. The schematic structure of the KNN-based
prediction rule is shown in Fig. 4. For each EEG epoch in the
moving window, the KNN method finds its K-nearest (best
matching) samples in each baseline, and compares its
averaged distances to the two groups of K-nearest neigh-
bors. The epoch is classified to a baseline that is “closer” to it.
The KNN prediction procedure is described in the following.

The KNN methods use similarity measures to quantify
the closeness between a moving-window EEG and baseline
samples. We employed three frequently-used time-series
similarity measures. If we denote two time series of STLmax
as X and Y with equal length of n, then the three types of
distances are briefly described as follows:

. Euclidean distance (EU): measures the degree of
similarity in terms of amplitude of the data. The
EU between X and Y is defined as

EDxy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

n
p¼1ðxp � ypÞ

2
q

:

. T-statistical distance (TS): a statistical distance mea-
sure between two time series derived from the t-test.
It is frequently used to determine if the mean values

of two time series differ from each other in a
significant way under the assumptions that the
paired differences are independent and identically
normally distributed. The TS between X and Y is
calculated by TSxy ¼

Pn
p¼1 jxp � ypj=

ffiffiffi
n
p

�jX�Y j, where
�jX�Y j is the sample standard deviation of the
absolute difference between the time series X and Y .

. Dynamic time warping (DTW): DTW measures simi-
larity based on the best-possible alignment or the
minimum mapping distance between two time
series. The two time series are “warped” in the time
domain to find the optimal pattern matching between
them. DTW is particularly suited to matching time
series patterns independent of time variations. A
detailed calculation of DTW can be found in [47].

Once a similarity measure is chosen, we can obtain the

distance between a baseline sample and an EEG epoch in

the moving window. For a multichannel EEG epoch, the

window-sample distance is calculated as follows:

dpre;i ¼
XM
j¼1

distance
�
Sjpre;i; S

j
mw

�
; ð1Þ

dint;i ¼
XM
j¼1

distance
�
Sjint;i; S

j
mw

�
; ð2Þ

where M ¼ 26 is the number of EEG channels. Sjpre;i and

Sjint;i are the jth channels of EEG time series in the ith

preseizure and normal baseline sample, respectively; Sjmv;i
is the jth channel of EEG in the windowed EEG epoch; dpre;i
and dint;i are the distances between the windowed EEG and

the ith sample in the preseizure and normal baseline,

respectively. The term distance in the above formula

represents a time series distance measure, which denotes

EU, TS, or DTW in this paper.
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Fig. 4. Schematic structure of the KNN-based prediction rule.



We used four choices of K. They were three, seven,
half, and all of the baseline samples, respectively. Once K
is fixed, the weighted summation of K-smallest window-
sample distances in a baseline was considered as the
distance between the windowed EEG epoch and that
baseline. Therefore, we call the two distances as window-
normal distance DK

int and window-preseizure distance
DK
pre, respectively. For each windowed EEG epoch, its

distances to the two baselines can be calculated by DK
pre ¼PK

k¼1 �kdpre;k and DK
int ¼

PK
k¼1 �kdint;k. The �k and �k are

the weights of the kth preseizure and normal baseline,
respectively. The dpre;k and dint;k are the distances between
the windowed EEG epoch and its kth nearest neighbor
in the preseizure and normal baseline, respectively. Once
the two baseline-window distances are obtained, the
prediction decision can be made by

predictor ¼ 1; if DK
pre=D

K
int � R�ðissue an alarmÞ;

0; otherwise ðno warningÞ;

�

where the threshold R� can be used to control the sensitivity
of the prediction system. In this study, we employed R� ¼
0:99 to make the prediction less sensitive to noises which
would lead to many false predictions. Note that, the impact
of this threshold is also investigated in this study.

3.3.3 Evaluation of a Prediction Result

Baseline updating depends on prediction evaluation feed-
back. We define the evaluation metrics of each prediction
based on four prediction outcomes that are summarized in
Fig. 5 and illustrated in Fig. 6. If the predefined prediction
horizon is H minutes, then we can categorize each
prediction outcome into one of the following four subsets:

. True positive (TP): if predictor ¼ 1 and a seizure
occurs within H minutes after the prediction.

. False positive (FP): if predictor ¼ 1 and no seizure
occurs within H minutes after the prediction.

. True negative (TN): if predictor ¼ 0 and no seizure
occurs within H minutes after the prediction.

. False negative (FN): if predictor ¼ 0 and a seizure
occurs within H minutes after the prediction.

3.3.4 Baseline-Updating Mechanism

The flowchart of the baseline update framework from
delayed prediction feedback is shown in Fig. 7. In medical
practice, a physician mentally compares the EEG patterns
from an individual with the patterns from a database of
many other patients and healthy people. The search of the
best-matching patterns can be global within the whole
database, and can also be local within a subgroup of the
database. We designed both local and global update rules
inspired by this consideration. In particular, we designed
four update rules including score-based local update (SL),
score-based global update (SG), distance-based local update
(DL), and distance-based global update (DG).

Score-based update. In this prediction scheme, we assume
that different baseline samples have different power in
decision-making. We assigned a score to each baseline
sample to indicate its “importance”. The basic idea of
score updating is to reinforce the scores of the “good”
baseline samples when correct predictions are made, and
decrease the scores of “bad” baseline samples when false
predictions are made. The score of a baseline sample is
determined by its window-sample distances. For example,
if a windowed EEG epoch is misclassified as preseizure
via the KNN evaluation, then the preseizure baseline
samples that are closest to, and the normal baseline
samples that are furthest from, this windowed epoch
will see their scores penalized according to their window-
sample distances. The closest preseizure baseline sample
and the furthest normal baseline sample receive the
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Fig. 7. Flowchart of the retrospective baseline-updating framework.

Fig. 5. The categorization of prediction outcomes. Each prediction
outcome can always be classified into one of the four subsets (TP, FP,
TN, and FN).

Fig. 6. A demonstration of the evaluation metrics: TP, FP, TN, and FN.



highest penalties. The mathematical formulations of the
score updating rules are stated in the following.

At the beginning, the initial scores of the baseline sample
are all equal, and are given by

�i ¼ �i ¼
1

N
; i ¼ 1; . . . ; N; ð3Þ

where �i and �i are the scores of the ith sample in the
preseizure and normal baseline, respectively. N ¼ 50 is the
number of samples in each baseline. Let r 2 ð0; 1Þ denote
the learning rate to control the update size for the scores,
then the score update rule is represented as follows:

. For feedback of TP or FN (the windowed EEG is in
preseizure period), the scores are updated by

�i ¼ �i 1� dpre;i � dpre
dpre

 !
� r; ð4Þ

�i ¼ �i 1þ dint;i � dint
dint

� �
� r: ð5Þ

. For feedback of FP or TN (the windowed EEG is in
normal period), the scores are updated by

�i ¼ �i 1þ dpre;i � dpre
dpre

 !
� r; ð6Þ

�i ¼ �i 1� dint;i � dint
dint

� �
� r; ð7Þ

where 8i ¼ 1; 2; . . . ; N , dpre ¼
PN

i¼1 dpre;i=N , and dint ¼PN
i¼1 dint;i=N .
For a windowed EEG epoch, the system makes a

prediction by the KNN method. The feedback of this
prediction is available until either of the following occurs:
1) the prediction horizon passes, or 2) a seizure occurs. Once
the feedback of this prediction is given, the score-based
retrospective baseline update rules are as follows:

. For case of FP: replace the lowest-scored sample in
the normal K-nearest neighbors with the moving-
window EEG epoch.

. For case of FN: replace the lowest-scored sample in
the preseizure K-nearest neighbors with the mov-
ing-window EEG epoch.

. For cases of TP and TN: keep the current baseline
samples unchanged.

When K equals to N , the above update is a global
update rule that replaces the global lowest-scored baseline
sample. When K is smaller than N , it is a local update rule
which only considers the local K-nearest neighbors of a
windowed EEG epoch. The score-based local and global
update rules are denoted as “SL” and “SG”, respectively, in
the remaining part of this paper.

Distance-based update. The distance between two EEG
epochs indicates the degree of similarity. Intuitively, a
shorter distance means a better match, and a larger distance
indicates a worse match. For a windowed EEG epoch, the

goodness of a baseline sample depends on its window-
sample distances. For example, suppose a normal state
windowed EEG epoch, via KNN evaluation, is falsely
classified as preseizure. We consider the furthest normal
baseline sample as the “bad” baseline sample, which may
be the primary cause of the false prediction, and we replace
it with the windowed EEG epoch. In summary, for a
windowed EEG epoch, the retrospective distance-based
baseline update rules are as follows:

. For feedback of FP: replace the furthest sample in its
K-nearest neighbors of the normal baseline with the
corresponding windowed EEG epoch.

. For feedback of FN: replace the furthest sample in its
K-nearest neighbors of the preseizure baseline with
the corresponding windowed EEG epoch.

. For feedback of TP or TN: keep the current baseline
samples unchanged.

Similar to “SL” and “SG”, the distance-based update can
also be local and global depending on the value of K. The
distance-based local and global update rules are denoted as
“DL” and “DG”, respectively.

The overall computational complexity of our algorithm
can be analyzed as follows: for the complexity of KNN,
suppose each sliding window epoch has n points and each
baseline has N samples. The Euclidean distance calculation
takes Oð2nNÞ. Finding the K-nearest neighbors involves
sorting, which takes additional Oð2N2Þ steps. Finally, the
summation of K distances of each baseline and the KNN
decision-making process take Oð2KÞ steps. In summary, the
KNN-based classification takes Oð2nN þ 2N2 þ 2KÞ. For
the score-based updating rule, according to (4)-(7), the score
update of a single baseline sample runs Oð1Þ steps, thus the
score update of 2N baseline samples takes Oð2NÞ steps. The
scores of baseline samples are updated at every sliding
window step. If a wrong prediction is made, a baseline with
the lowest score will be replaced, which takesOðNÞ steps. For
the distance-based updating rule, two baselines are only
updated when a wrong prediction is made. It takesOð1Þ steps
to find the baseline sample to be replaced, since the distances
have already been computed and sorted in the KNN step.

3.4 Evaluation of Prediction Performance

To evaluate a prediction model, the most commonly used
performance measures are specificity and sensitivity. In
seizure prediction studies, sensitivity is usually defined as
the number of correctly predicted seizures divided by the
total number of seizures. A seizure is considered to be
correctly predicted if there is at least one warning within its
preceding prediction horizon. In this study, we also
employed this definition of sensitivity, denoted as senblk.
To estimate the prediction specificity, most studies calcu-
lated a false prediction rate, which is defined by the number
of false predictions per hour (or unit time). However, false
prediction rate does not provide enough information to
infer the effect of prediction horizon on the prediction
performance. For example, a patient has to wait until the
end of prediction horizon to determine if a warning is
false. Given the same false prediction rate, an algorithm
with a 3-hour prediction horizon will give a patient much
longer false awaiting time than the one with a 10-minute
prediction horizon. To overcome this bias, Mormann et al.
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[33] suggested that prediction specificity can be estimated
by quantifying the portion of time during the normal period
that is not considered to be false awaiting time. We herein
employed this specificity measure, denoted as speblk. A
demonstration of the senblk and speblk quantification is
shown in Fig. 8. In turn, we also define the overall
prediction performance (OPP) as an average of senblk and
speblk, i.e., OPP ¼ ðsenblk þ speblkÞ=2. The OPP values can
range from [0.0, 1.0]. An accurate prediction model should
have an OPP close to 1, and a random model should have
an OPP around 0.5. The closer the OPP value to 1, the better
the prediction performance.

Receiver operating characteristic (ROC) analysis. In any
prediction algorithm, one can always make a tradeoff
between sensitivity and specificity, such as increasing
sensitivity at the expense of a lower specificity. A common
way to compare different prediction models is to construct a
ROC curve that plots sensitivity versus (1-specificity),
whereas the decision boundary of the prediction model is
varied throughout its range. The area under the ROC curve
(AUC) is commonly used to access the overall prediction
power of a prediction model. AUC values are usually
between 0.5 and 1. A perfect prediction model has an AUC
value of 1, while a random chance model has an AUC of
around 0.5.

4 RESULTS

4.1 Computational Settings

The proposed prediction approach was tested on EEG
recordings of 10 patients with epilepsy using three
prediction horizons, four baseline-update rules, four
settings of KNN, and three types of similarity measures.
The summary of the parameter settings of the prediction
system is shown in Table 2.

4.2 Random Predication Models

There has been no definite conclusion whether prospective
algorithms can predict seizures based on EEG analysis.
Before applying it to any clinical application, it is necessary
to evaluate if the designed prediction model is indeed able
to perform better than a chance model. Therefore, we
compared the performance of the proposed adaptive
prediction model with two random prediction schemes:
the periodic prediction scheme and the Poisson prediction
scheme. The periodic prediction scheme gives warnings at
a fixed time interval T . The Poisson prediction scheme
issues a warning according to an exponential distributed
random time interval with a fixed mean �. We performed
the periodic prediction scheme and the Poisson prediction
scheme for each patient. The values of � and T were
determined according to the average length of interseizure
intervals for each patient as shown in Table 1. For
example, for patient 1, the averaged interseizure interval
is 12.17 hours, we set � ¼ T ¼ 12:17 hours. This is the best
value setting of T and � the one could obtain.

4.3 Prediction Performance of ssenbblk and sspebblk
For each patient, the EEG recordings were divided into
training and testing data set. The training data set is the
EEG recordings that contain the first half of seizure
occurrences. It is used to train our approach to find the
best parameter setting. The testing data set is the EEG
recordings that contain the second half of seizure occur-
rences. It is used to test our prediction approach prospec-
tively using the best parameter setting found from the
training data. The best parameter setting is defined as one
with the highest OPP value. In addition, to find the most
appropriate tradeoff between sensitivity and specificity, we
also added a constraint that the senblk must be greater than
0.6, and the speblk must be greater than 0.4. If none of the
settings meet this constraint, we simply selected the one
with the highest OPP value.

Table 3 summarizes the performance characteristics of
the adaptive learning prediction scheme in the training
and testing data set. To determine the importance and
effectiveness of the proposed baseline-update rule, we also
summarizes the performance characteristics of the non-
update prediction scheme in Table 3. The nonupdate
prediction scheme employed the same initial baselines as
the adaptive ones for each patient, and kept the baseline
unchanged throughout the prediction process. Table 3
clearly shows that the training and testing OPP values of
the adaptive learning approach are considerably higher
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TABLE 2
Summary of the Settings of the Prediction System

Fig. 8. A demonstration of the prediction procedure based on the distance
ratio DK

pre=D
K
int. The definition of sensitivity (senblk), specificity (speblk),

false alarms, and false seizure awaiting periods are also illustrated.



than those of the nonupdate prediction scheme in all the
three prediction horizons. To compare with random
predictions, the prediction results of the periodic and
Poisson prediction schemes are also shown in Table 3.
The adaptive learning approach performed much better
than the two random prediction schemes in terms of the
overall OPP values.

The adaptive prediction approach achieved the
best overall performance using the prediction horizon of
150 minutes. An example of the prediction outcomes of the
adaptive prediction system is also shown in Fig. 9. In
general, the averaged testing OPP over the 10 patients of the
adaptive prediction approach is 0.70, which is 14, 25, and
27 percent higher than that of the nonupdate prediction

scheme, the Poisson prediction scheme, and the periodic
prediction scheme, respectively. Starting from the initial
(less representative) baseline samples, the adaptive system
increased the prediction performance considerably by
baseline updating for each individual patient. The experi-
mental results confirmed our goal that it is possible to
achieve personalized prediction through adaptive learning
approaches. In addition, one can observe an increasing
trend of the averaged OPP values for both adaptive and
nonupdate prediction schemes when the prediction horizon
increases from 30 to 150 minutes. This may indicate that the
prediction horizon of 150 minutes is a better estimate of the
real length of preseizure periods. The length of prediction
horizon is very crucial since a better estimate of preseizure
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TABLE 3
The Training and Testing Performance Characteristics of the Adaptive Prediction Approach and the Nonupdate Prediction Scheme

The performance characteristics of the two random prediction schemes (periodic and Poisson) are also reported using T ¼ � ¼ averaged length of
inter-seizure intervals for each patient.

Fig. 9. An example of the prediction outcomes of the adaptive prediction system for patient 6 using the prediction horizon of 150 minutes. Other
experimental settings are SG, K ¼ all, and DTW. The vertical black lines are the recorded seizures in this patient, and the dashed horizontal line is
the threshold of distance ratio. A warning is issued if the distance ratio falls below the threshold.



periods will give better reinforcement feedbacks to the
adaptive learning system, and thus will lead to a better
prediction performance.

4.4 Receiver Operating Characteristic Analysis

The effectiveness of the proposed four adaptive prediction
schemes was also evaluated by the ROC analysis. Table 4
summarizes the AUC values of the four adaptive schemes
(SL, SD, DL, and DG), the nonupdate scheme, and the two
random schemes (periodic and the Poisson). The four
adaptive schemes and the nonupdate scheme employed
the best parameter settings obtained from the training data
of each patient. For each prediction scheme with a selected
setting, the sensitivity and specificity of the entire EEG
recordings of a patient were used to generate ROC curves.
The parameter used to generate ROC curves is the threshold
of the distance ratio R�, which was tuned from 0.1 to 10
to make a broad spectrum of tradeoff between sensitivity
and specificity. For the periodic and Poisson schemes,
the sensitivity and specificity tradeoff is controlled by the
parameters T and �, respectively. The ROC curves were
obtained by tuning T and � from 0.1 to 20 hours. We
performed 300 Monte Carlo simulations for both random
schemes, a set of � and T were randomly, uniformly selected
from [0.1, 20] hours at each experiment. The averaged AUC
values over 300 experiments are reported in Table 4.

One can clearly observe that the four adaptive schemes
generally have higher AUC values than the nonupdate and
the two random schemes. When using the prediction

horizons of 150 minutes, the averaged AUC values of the
four adaptive schemes (SL, SG, DL, and DG) are 0.67, 0.68,
0.72, and 0.71, respectively. The averaged AUC values of SL,
SG, DL, and DG are 14, 15, 22, and 20 percent higher than
the averaged AUC value of the nonupdate scheme. This
indicates that all the proposed four adaptive prediction
schemes increased the overall prediction performance of the
system through adaptive baseline updating. When com-
pared to the random schemes, the averaged AUC values of
SL, SG, DL, and DG are 24, 26, 33, and 31 percent higher
than the averaged AUC values of the periodic and Poisson
scheme (both are 0.54). The significant higher AUC values
strongly indicate that the adaptive prediction schemes have
a much higher prediction power than random predictions.
Similar results can also be obtained when using the
prediction horizons of 30 and 90 minutes.

To make a solid statistical comparison, it is also
interesting to investigate the performance of the four
adaptive schemes as well as the nonupdate scheme on all
the parameter settings over the 10 patients. For each scheme
(adaptive and nonupdate), there are 36 settings including
four choices of K, three choices of distance measures, and
three choices of prediction horizons. Fig. 10 shows the
boxplots of the averaged AUC values over 10 patients for
the entire 36 settings of each scheme. The AUC values of the
two random schemes obtained from 300 Monte Carlo
simulations are shown in Fig. 10 for comparison. The
boxplot clearly shows that the AUC values of the four
proposed adaptive prediction schemes have significantly
different distributions with those of the nonupdate and
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TABLE 4
AUC Comparison of the Four Adaptive Prediction Schemes with the Nonupdate and the Two Random Prediction Schemes

The four adaptive prediction schemes and the non-update prediction scheme employed the best parameter settings using the training data set.
Their ROC curves were obtained by tuning the threshold of distance ratio R� from 0.1 to 10 to make a broad spectrum of tradeoff between
sensitivity and specificity. For the periodic and Poisson prediction schemes, the ROC curves were obtained by tuning � and T from 0.1 to 20 hours
for each patient. We performed 300 Monte Carlo simulations for both random prediction schemes, a set of � and T were randomly, uniformly
selected from [0.1, 20] hours at each experiment. The averaged AUC values over the 300 experiments are reported in this table.



random schemes. We used the AUC values of the non-
update scheme as the baseline group, and performed paired
t-test for the AUC values of the four adaptive schemes and
the two random schemes. As shown in the Fig. 10, the p-
value of each paired t-test is smaller than 0.001. This
outcome indicates that the four adaptive prediction schemes
all performed significantly better than the nonupdate
scheme. While the nonupdate scheme performed signifi-
cantly better than the two random schemes. This is not
unexpected, since the initial baseline samples employed by
the nonupdate scheme already contained some useful
information of the preseizure and normal EEG patterns. It,
thus, worked better than random predictions.

When we compare among the four proposed adaptive
schemes, we found that the two distance-based update
schemes (DL and DG) performed better than the two score-
based update schemes with p-values smaller than 0.001.
This outcome implies that the distance-based update rule
did a better job in the online baseline updating than the
score-based rule. In addition, the AUC values of the two
score-based update schemes SL and SG are comparable
with a p-value of 0.15, and DG worked a little better than
DL with a p-value of 0.02.

4.5 Comparisons to Other Seizure Prediction
Methods

Although over the past decade there have been several
studies in seizure prediction, almost all of them are focused
on retrospective analyses of prediction, which is to show
that there are detectable changes in EEG signals prior to a
seizure. Those studies often used short-term EEG recordings
sampled 45 to 90 minutes before a seizure. Very few studies
investigate online seizure prediction algorithms using

prospective analysis of continuous long-term EEG record-
ings [45], [49]. Because the nature of prospective and
retrospective analyses that it is extremely hard to compare
the real prediction performances between these algorithms.
According to a seminal review paper in seizure prediction
[33], more transformable and unambiguous performance
measures such as the portion of false awaiting time are
suggested. Here, we compare our prediction results with the
studies by Sackellares et al. and Snyder et al. [45], [49] that
report the sensitivity and the portion of false awaiting time
of their prospective analyses. Sackellares et al. [45] evalu-
ated an adaptive seizure prediction approach on 10 patients.
Given a prediction horizon of 150 minutes and a sensitivity
of 80 percent, the portion of false awaiting time is 37 percent
(corresponding to our specificity of 63 percent) on average
over the 10 patients. Snyder et al. [49] performed a
prospective seizure prediction on 4 patients using a
prediction horizon of 120 minutes. The averaged sensitivity
is 82.3 percent and the portion of false awaiting time is
30.5 percent (corresponding to our specificity of 69.5 per-
cent). The OPP values of the two studies are 0.72 and 0.76,
respectively. It was not clearly indicated in both the papers
if the reported OPP values were based on the training set,
the testing set, or the entire data set. Thus, we base our
comparison on the performance on an entire EEG recording
of each patient using the best parameter setting obtained
from our previous analysis. With a prediction horizon of
150 minutes, our adaptive learning approach achieved a
sensitivity of 77 percent and a specificity of 73 percent on
average over the 10 patients. The OPP value of our approach
is 0.75, which is comparable to those in the two seminal
studies. We must note, that the comparison might not
provide a conclusive result as it is based on different data
sets with different population sizes, and the data character-
istics vary greatly. A large public EEG database for seizure
prediction is on the way and a proper comparison remains
to be further investigated in our future study.

5 CONCLUSIONS AND DISCUSSION

This study investigated the challenging problem of epileptic
seizure prediction. We introduced an adaptive learning
approach, which combine reinforcement learning, online
monitoring, and adaptive control theory to achieve a
personalized seizure prediction. Using EEG recordings
from 10 patients with epilepsy, we demonstrated that the
adaptive learning algorithm was effective in increasing
prediction performance of the system through adaptive
baseline updating. The best prediction performance was
achieved using the prediction horizon of 150 minutes, in
which the averaged sensitivity was 73 percent and the
averaged specificity was 67 percent. The ROC analysis
demonstrated that the adaptive prediction schemes indeed
performed much better than the nonupdate scheme and the
two chance models.

The experimental results of this study are quite encoura-
ging, and they suggest that the proposed adaptive approach
performed better than random predictors [33]. An autono-
mous learning framework like the one proposed here was
shown capable of self-adjusting the baseline samples for
each individual patient without a tedious parameter tuning
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Fig. 10. Box-plot of the AUC values of the four adaptive schemes, the
nonupdate scheme, and the two random schemes. The AUC values of
the adaptive and nonupdate schemes are the averaged AUC values
over 10 patients for all possible parameter settings ( ¼ 36) of each
scheme. The AUC values of the two random schemes are obtained
from 300 Monte Carlo simulations, in each of which a set of values of
lambda and T are randomly and uniformly varied from 0.1 to 20 hours.
Each box shows the median, interquartile range, minimum, and
maximum of the AUC values of each prediction scheme. Using AUC
values of the nondicated-update scheme as the baseline group, the p-
values of the paired t-tests for the AUC values of other prediction
scheme are indicated in the plot. The four adaptive schemes performed
significantly better than the nonupdate scheme with all p-values smaller
than 0.001. While the nonupdate scheme performed significantly better
than the two random schemes with both p-values smaller than 0.001.



process. With this attractive online learning ability, the
proposed adaptive learning prediction system is expected
to be able to further improve the prediction performance
when more EEG recordings are available for each patient. It
is important to remark that in this study, the online
prediction algorithm was evaluated based on a perfect
seizure detection (i.e., actual seizure timing is provided
after our algorithm makes prediction). This study did not,
however, investigate the integration of our online predic-
tion algorithm with any of the existing seizure detection
algorithms. The reason is that although there exist a number
of seizure detection algorithms embedded in clinical EEG
systems, most detection algorithms still suffer from an
extremely high false detection rate. Thus, the impact of false
detections from seizure detection systems on the perfor-
mance of our seizure prediction algorithm is beyond the
scope of this study and remains to be further investigated in
our future work. If one wants to test a fully automated
framework, our seizure prediction algorithm can be readily
integrated to any clinical EEG system, and it can be fully
automated by relying on the existing automated seizure
detection algorithms in the EEG system. In practice, a
prospective seizure prediction system must have both high
sensitivity and specificity for clinical use. If such a seizure-
warning device is to become a reality, we envision that the
adaptive learning techniques will definitely play an im-
portant role in handling the great variety of brain-wave
patterns among different patients.
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