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Machine Learning Algorithms in Bipedal
Robot Control

Shouyi Wang, Student Member, IEEE, Wanpracha Chaovalitwongse, Member, IEEE, and Robert Babuska

Abstract—Over the past decades, machine learning techniques,
such as supervised learning, reinforcement learning, and unsuper-
vised learning, have been increasingly used in the control engineer-
ing community. Various learning algorithms have been developed
to achieve autonomous operation and intelligent decision making
for many complex and challenging control problems. One of such
problems is bipedal walking robot control. Although still in their
early stages, learning techniques have demonstrated promising po-
tential to build adaptive control systems for bipedal robots. This
paper gives a review of recent advances on the state-of-the-art
learning algorithms and their applications to bipedal robot con-
trol. The effects and limitations of different learning techniques
are discussed through a representative selection of examples from
the literature. Guidelines for future research on learning control
of bipedal robots are provided in the end.

Index Terms—Bipedal
reinforcement learning,
learning.

walking robots, learning control,
supervised learning, unsupervised

I. INTRODUCTION

IPEDAL robot control is one of the most challenging and

popular research topics in the field of robotics. We have
witnessed an escalating development of bipedal walking robots
based on various types of control mechanisms. However, un-
like the well-solved classical control problems (e.g., control of
industrial robot arms), the control problem of bipedal robots
is still far from being fully solved. Although many classical
model-based control techniques have been proposed to bipedal
robot control, such as trajectory tracking control [76], robust
control [105], and model predictive control (MPC) [57], these
control laws are generally precomputed and inflexible. The re-
sulting bipedal robots are usually not satisfactory in terms of
stability, adaptability, and robustness. There are five exceptional
characteristics of bipedal robots that present challenges and
constrains to the design of control systems.
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1) Nonlinear dynamics: Bipedal robots are highly nonlinear
and naturally unstable systems. The well-developed clas-
sical control theories for linear systems cannot be applied
directly.

2) Discretely changing in dynamics: Each walking cycle con-
sists of two different situations in a sequence: The stati-
cally stable double-support phase (both feet in contact
with the ground) and the statically unstable single-support
phase (only one foot contacts with the ground). Suitable
control strategies are required for step-to-step transitions.

3) Underactuated system: Walking robots are unconnected
to the ground. Even if all joints of a bipedal robot are
controlled perfectly, it is still not enough to completely
control all the degrees of freedom (DOFs) of the robot.

4) Multivariable system: Walking systems usually have many
DOFs, especially in 3-D spaces. The interactions between
DOF:s and the coordination of multijoint movements have
been recognized as a very difficult control problem.

5) Changing environments: Bipedal robots have to be adap-
tive to uncertainties and respond to environmental changes
correctly. For example, the ground may become uneven,
elastic, sticky, soft, or stiff; there may be obstacles on the
ground. A bipedal robot has to adjust its control strategies
fast enough to such environmental changes.

In recent years, the great advances in computing power have
enabled the implementation of highly sophisticated learning al-
gorithms in practice. Learning algorithms are among the most
valuable tools to solve complex problems that need “intelli-
gent decision making,” and to design truly intelligent machines
with human-like capabilities. Robot learning is a rapidly grow-
ing area of research at the intersection of robotics and machine
learning [22]. With a classical control approach, a robot is ex-
plicitly programmed to perform the desired task using a com-
plete mathematical model of the robot and its environment. The
parameters of the control algorithms are often chosen by hand
after extensive empirical testing experiments. On the other hand,
in a learning control approach, a robot is only provided with a
partial model, and a machine learning algorithm is employed
to fine-tune the parameters of the control system to acquire
the desired skills. A learning controller is capable of improv-
ing its control policy autonomously over time, in some sense
tending toward an ultimate goal. Learning control techniques
have shown great potential of adaptability and flexibility, and
thus, become extremely active in recent years. There have been
a number of successful applications of learning algorithms on
bipedal robots [11], [25], [51], [82], [104], [123]. Learning con-
trol techniques appear to be promising in making bipedal robots
reliable, adaptive, and versatile. In fact, building intelligent

1094-6977/$31.00 © 2012 IEEE
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Fig. 1. Basic structures of the three learning paradigms: supervised learning,
reinforcement learning, and unsupervised learning.

humanoid walking robots have been one of the main research
streams in machine learning. If such robots are ever to be-
come areality, learning control techniques will definitely play an
important role.

There are several comprehensive reviews of bipedal walk-
ing robots [16], [50], [109]. However, none of them has been
specifically dedicated to provide the review of the state-of-the-
art learning techniques in the area of bipedal robot control. This
paper aims to bridge this gap. The main objectives of this pa-
per are twofold. The first goal is to review the recent advances
of mainstream learning algorithms. In addition, the second ob-
jective is to investigate how learning techniques can be ap-
plied to bipedal walking control through the most representative
examples.

The rest of this paper is organized as follows. Section II
presents an overview of the three major types of learning
paradigms, and surveys the recent advances of the most in-
fluential learning algorithms. Section III provides an overview
of the background of bipedal robot control, including stability
criteria, classical model-based and biological-inspired control
approaches. Section IV presents the state-of-the-art learning
control techniques that have been applied to bipedal robots.
Section V gives a technical comparison of learning algorithms
by their advantages and disadvantages. Finally, we identify
some important open issues and promising directions for future
research.

II. LEARNING ALGORITHMS

Learning algorithms specify how the changes in a learner’s
behavior depend on the inputs it received and on the feed-
back from the environment. Given the same input, a learning
agent may respond differently later on than it did earlier. With
respect to the sort of feedback that a learner has access to, learn-
ing algorithms generally fall into three broad categories: super-
vised learning (SL), reinforcement learning (RL), and unsuper-
vised learning (UL). The basic structures of the three learning
paradigms are illustrated in Fig. 1.
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A. Supervised Learning

SL is a machine learning mechanism that first finds a mapping
between inputs and outputs based on a training dataset, and then
makes predictions to the inputs that it has never seen in training.
To achieve good performance of generalization, the training
dataset should contain a fully representative collection of data
so that a valid general mapping between inputs and outputs
can be found. SL is one of the most frequently used learning
mechanisms in designing learning systems. A large number of
SL algorithms have been developed over the past decades. They
can be categorized into several major groups as discussed in the
following.

1) Neural Networks: Neural Networks (NNs) are powerful
tools that have been widely used to solve many SL tasks, where
there exists sufficient amount of training data. There are sev-
eral popular learning algorithms to train NNs (such as Percep-
tron learning rule, Widrow-Hoff rule), but the most well-known
and commonly used one is backpropagation (BP) developed by
Rumelhart in the 1980s [88]. BP adjusts the weights of NN by
calculating how the error changes as each weight is increased
or decreased slightly. The basic update rule of BP is given by

_ 9E
aawj

ey

Wy = Wy

where « is the learning rate that controls the size of weight
changes at each iteration, and g—ﬁ is the partial derivative of the
error function E with respect to weight w;. BP-based NNs have
become popular in practice since they can often find a good set
of weights in a reasonable amount of time. They can be used
to solve many problems that involve large amounts of data and
complex mapping relationships. As a gradient-based method,
BP is subject to the local minima problem, which is inefficient
in searching global optimal solutions. One of the approaches
to tackle this problem is to try different initial weights until a
satisfactory solution is found [119].

In general, the major advantage of NN-based SL methods
is that they are convenient to use and one does not have to
understand the solution in great detail. For example, one does
not need to know anything about a robot’s model; an NN can be
trained to estimate the robot’s model from the input-output data
of the robot. However, the drawback is that the learned NN is
usually difficult to interpret because of its complicated structure.

2) Locally Weighted Learning: Instead of mapping nonlin-
ear functions globally (such as BP), locally weighted learning
(LWL) represents another class of methods which fit complex
nonlinear functions by local kernel functions. A demonstration
of LWL is shown in Fig. 2. There are two major types of LWL:
Memory-based LWL, which simply stores all training data in
memory and uses efficient interpolation techniques to make
predictions of new inputs [1]; nonmemory-based LWL, which
constructs compact representations of training data by recur-
sive techniques so as to avoid storing large amounts of data in
memory [62], [107]. The key part of all LWL algorithms is to
determine the region of validity in which a local model can be
trusted. Suppose there are K local models, the region of validity
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W kernel function

Input
Fig. 2. Schematic view of locally weighted regression.
can be calculated from a Gaussian kernel by
1 T
Wy = exp —i(a:—ck) Dy (z — ¢) 2)

where ¢;, is the center of the kth linear model, and D, is the
distance metric that determines the size and shape of the valid-
ity region of the kth linear model. Given a query point x, every
linear model calculates a prediction ¢ (x) based on the ob-
tained local validity. Then, the output of LWL is the normalized
weighted mean of all K linear models calculated by

K N
> k1 Wk Tk

K
D k1 Wk

LWL achieves low computational complexity and efficient
learning in high-dimensional spaces. Another attractive feature
of LWL is that local models can be allocated as needed, and
the modeling process can be easily controlled by adjusting the
parameters of the local models. LWL techniques have been
used quite successfully to learn inverse dynamics or kinematic
mappings in robot control systems [6], [7]. One of the most
popular LWL algorithms is called locally weighted projection
regression (LWPR), which has shown good capability to solve
several online learning problems of humanoid robot control
in [108].

3) Support Vector Machine: Support vector machine (SVM)
is a widely used classification technique in machine learn-
ing [20]. It has been used in pattern recognition and classifi-
cation problems, such as handwritten recognition [96], speaker
identification [95], face detection in images [74], and text cate-
gorization [42]. The most important idea of SVM is that every
data instance can be classified by a hyperplane, if the dataset is
transformed into a space with sufficiently high dimensions [14].
Therefore, an SVM first projects input data instances into a
higher dimensional space, and then divides the space with a
separation hyperplane which not only minimizes the misclas-
sification error but also maximizes the margin separating the
two classes. One of the most successful optimization formalism
of SVM is based on robust linear programming. Consider two
data groups in the n-dimensional real-space R", optimization
formalism is given by

Y= 3

ey ez

min — + — 4)
WYY, M k
st Aw—ey—e>y (5

—Bw+ey—e>z (6)

y=0, 220 )
where A is an m X n matrix representing m observations in
group one, and B is a k X n matrix representing k observations
in group two. The two data groups are separated by a hyperplane
(defined by Aw > ey, Bw < e7), and y and z are binary {0, 1}
decision variables that indicate if a data instance in group A or
B violates the hyperplane constraint. The objective function is,
therefore, minimizing the average misclassifications subject to
the hyperplane constraint for separating data instances of A from
data instances of B. The training of an SVM obtains a global
solution instead of local optimum. However, one drawback of
SVM is that the results are sensitive to the choices of the kernel
function. The problem of choosing appropriate kernel functions
is still left to user’s creativity and experience.

4) Decision Tree: Decision trees use a hierarchical tree
model to classify or predict data instances. Given a set of train-
ing data with associated attributes, a decision tree can be in-
duced by using algorithms such as ID3 [83], CART [13], and
C4.5 [84]. While ID3 and C4.5 are primarily suitable for classifi-
cation tasks, CART has been specifically developed for regres-
sion problems. The most well-known algorithm is C4.5 [84],
which builds decision trees by using the concept of Shannon
entropy [98]. Based on the assumption that each attribute of
data instances can be used to make a decision, C4.5 examines
the relative entropy for each attribute and accordingly splits
the dataset into smaller subsets. The attribute with the highest
normalized information gain is used to make decisions. Rug-
gieri [87] provided an efficient version of C4.5, called EC4.5,
which is claimed to be able to achieve a performance gain up
to five times while compute the same decision trees as C4.5.
Yildiz and Dikmen [120] present three parallel C4.5 algorithms
which are designed to be applicable to large datasets. Baik and
Bala [9] present a distributed version of decision tree, which
generates partial trees and communicates the temporary results
among them in a collaborative way. The distributed decision
trees are efficient for large datasets collected in a distributed
system.

One of the most useful characteristics of decision trees is
that they are simple to understand and easy to interpret. People
can understand decision tree models after a brief explanation. It
should be noticed that a common assumption made in decision
trees is that data instances belonging to different classes have
different values in at least one of their attributes. Therefore, de-
cision trees tend to perform better when dealing with discrete or
categorical attributes, and will encounter problems when dealing
with continuous data. Moreover, another limitation of decision
trees is that they are usually sensitive to noise.

B. Reinforcement Learning

Among other modes of learning, humans heavily rely on
learning from interaction, repeating experiments with small
variations, and then finding out what works and what does not.
Consider a child learning to walk—it tries out various move-
ments, some actions work and are rewarded (moving forward),
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while others fail and are punished (falling). Inspired by animal
and human learning, the reinforcement learning (RL) approach
enables an agent to learn a mapping from states to actions by
trial and error so that the expected cumulative reward in the
future is maximized.

1) General Reinforcement Learning Scheme: RL is capa-
ble of learning while gaining experience through interactions
with environments. It provides both qualitative and quantitative
frameworks for understanding and modeling adaptive decision-
making problems in the form of rewards and punishments. There
are three fundamental elements in a typical RL scheme:

1) state set .S, in which a state s € S describes a system’s

current situation in its environment;

2) action set A, from which an action a € A is chosen at the

current state s;

3) scalar reward r € R indicates how well the agent is cur-

rently doing with respect to the given the task.

At each discrete time step ¢, an RL agent receives its state
information s; € S, and takes an action a; € A to interact with
its environment. The action a; changes its environment state
from s; to s;11 and this change is communicated to the learning
agent through a scalar reward r;, ;. Usually, the sign of reward
indicates whether the chosen action a; was good (positive re-
ward) or bad (negative reward). The RL agent attempts to learn
a policy that maps state s; to action a; so that the sum of the
expected future reward R, is maximized. The sum of future re-
wards is usually formulated in a discounted way [102], which
is given by

[o.¢]
Ry =rip1 +mi2 + 72+ = Z’Ykrt+k+1 ®)
k=0

where v is called the discounting rate that satisfies 0 < v < 1.
Applications of RL have been reported in areas such as robotics,
manufacturing, computer game playing, and economy [60]. Re-
cently, RL has also been used in psychology and cognitive mod-
els to simulate human learning in problem-solving and skill
acquisition [31].

2) Two Basic Reinforcement Learning Structures: Many RL
algorithms are available in the literature. The key element of
most of them is to approximate the expected future rewards for
each state or each state-action pair (under the current policy).
There are two prevalent RL structures: actor-critic scheme [56]
and Q-learning scheme [114] algorithms.

1) An actor-critic algorithm has two separate function ap-
proximators for action policy and state values, respec-
tively. The learned policy function is known as actor, be-
cause it is used to select actions. The estimated value
function is known as critic since it evaluates the actions
made by the actor. The value function and policy function
are usually both updated by temporal difference error.
Q-learning algorithms learn a state-action value function,
known as Q-function, which is often represented by a
lookup table indexed by state-action pairs. Since Q-table
is constructed on state-action space rather than just state
space, it discriminates the effects of choosing different

2)
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actions in each state. Compared with actor-critic algo-
rithms, Q-learning is easier to understand and implement.

The basic structure of actor-critic learning and Q-learning
algorithms are shown in Figs. 3 and 4, respectively.

3) Recent Advances in Reinforcement Learning: Most RL
algorithms suffer from the curse of dimensionality as the num-
ber of parameters to be learned grows exponentially with the size
of the state space. Thus, most of the RL methods are not appli-
cable to high-dimensional systems. One of the open questions in
RL is how to scale up RL algorithms to high-dimensional state-
action spaces. Recently, policy-gradient methods have attracted
great attention in RL research since they are considered to be ap-
plicable to high-dimensional systems. The policy-gradient RL
have been applied to some complex systems with many DOFs,
such as robot walking [25], [55], [70], [104], and traffic con-
trol [86]. Peters et al. [77] made a comprehensive survey of
policy-gradient-based RL methods, and developed a class of
RL algorithms called natural actor-critic learning, for which the
action policy was updated based on natural policy gradients [48].
The efficiency of the proposed learning algorithms was demon-
strated by a 7-DOF real robot arm which was programmed
to learn to hit a baseball. The natural actor-critic algorithm is
currently considered the best choice among the policy-gradient
methods [78]. In recent years, hierarchical RL approaches have
also been developed to handle the curse of dimensionality [61].
Multiagent or distributed RL are also an emerging topic in cur-
rent research of RL [33]. Some researchers also use predictive
state representation to improve the generalization of RL [85].

C. Unsupervised Learning

UL is inspired by the brain’s ability to extract patterns
and recognize complex visual scenes, sounds, and odors from
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sensory data. It has roots in neuroscience/psychology and is
based on information theory and statistics. An unsupervised
learner receives no feedback from its environment at all. It only
responds to the received inputs. At first glance, this seems im-
practical since how can we train a learner if we do not know
what it is supposed to do. Actually, most of these algorithms
perform some kind of clustering or associative rule learning.

1) Clustering: Clustering is the most important form of UL.
It deals with data that have not been preclassified in any way,
and does not need any type of supervision during its learning
process. Clustering is a learning paradigm that automatically
partitions input data into meaningful clusters based on the degree
of similarity.

The most well-known clustering algorithm is k-means clus-
tering, which finds k cluster centers that minimize a squared-
error criterion function [23]. Cluster centers are represented by
the gravity center of data instances; that is, the cluster centers
are arithmetic means of all data samples in the cluster. k-means
clustering assigns each data instance to a cluster whose center
is nearest to it. Since k-means clustering generates partitions
such that each pattern belongs to one and only one cluster, the
obtained clusters are disjoint. Fuzzy c-means (FCM) was devel-
oped to allow one data instance to belong to two or more clusters
rather than just being assigned completely to one cluster [24].
Each data instance is associated with each cluster by a mem-
bership function, which indicates the degree of membership to
that cluster. The FCM algorithm finds the weighted mean of
each cluster and then assigns a membership degree to each data
sample in the cluster. For example, data samples on the edge of
a cluster belong to the cluster to a lower degree than the data
around the center of the cluster.

Recently, distributed clustering algorithms have attracted con-
siderable attention to extract knowledge from large datasets [4],
[41]. Instead of being transmitted to a central site, data can be
first clustered independently at different local sites. Then, in the
subsequent step, the central site establishes a global clustering
based on the local clustering results.

2) Hebbian Learning: Thekey idea of Hebbian learning [37]
is that neurons with correlated activity increase their synaptic
connection strength. It is used in artificial neural networks to
learn associations between patterns that frequently occur to-
gether. The original Hebb’s hypothesis does not explicitly ad-
dress the update mechanism for synaptic weights. A general-
ized version of Hebbian learning, called differential Hebbian
rule [54], [58] can be used to update the synaptic weights. The
basic update rule of differential Hebbian learning is given by

wi™Y = wiid + nAz; Ay; ©)
where w;; is the synaptic strength from neuron ¢ to neuron j,
Ax; and Ay; denote the temporal changes of presynaptic and
postsynaptic activities, and 7 is the learning rate to control how
fast the weights get modified in each step. Notably, differential
Hebbian learning can be used to model simple level of adaptive
control that is analogous to self-organizing cortical function in
humans. It can be applied to construct an unsupervised, self-
organized learning control system for a robot to interact with
its environment with no evaluative information. Although it
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seems to be a low level of learning, Porr and Worgotter [80]
showed that this autonomous mechanism can develop rather
complex behavioral patterns in closed-loop feedback systems.
They confirmed this idea on a real bipedal robot, which was
capable of walking stably using the unsupervised differential
Hebbian learning [32].

III. BACKGROUND OF BIPEDAL WALKING CONTROL

According to a U.S. army report, more than 50% of the earth
surface is inaccessible to traditional vehicles with wheels or
tracks [5], [10]. However, we have to transport over rough ter-
rains in many real-world tasks, such as emergency rescue in
isolated areas with unpaved roads, relief after a natural disaster,
and alternatives for human labor in dangerous working environ-
ments. To date, the devices available to assist people in such
tasks are still very limited. As promising tools to solve these
problems, bipedal robots have become one of the most exciting
and emerging topics in the field of robotics. Moreover, bipedal
robots can also be used to develop new types of rehabilitation
tools for disabled people and to help elderly with household
work. The important prospective applications of bipedal walk-
ing robots are shown in Fig. 5.

A. Stability Criteria in Bipedal Robot Control

Bipedal robot walking can be broadly characterized as static
walking, quasi-dynamic walking, and dynamic walking. Differ-
ent types of walking are generated by different walking stability
criteria as follows.

1) Static Stability: The position of center of mass (COM)
and center of pressure (COP) are often used as stability
criteria for static walking. A robot is considered stable
if its COM or COP is within the convex hull of the foot
support area. Static stability is the oldest and the most
constrained stability criterion, often used in early days of
bipedal robots. A typical static walking robot is SD-2 built
by Salatian et al. [89].

2) Quasi-Dynamic Stability: The most well-known criterion
for quasi-dynamic walking is based on the concept of zero
moment point (ZMP) introduced by Vukobratovié et al.
in [111]. ZMP is a point on the ground where the resul-
tant of the ground reaction force acts. A stable gait can
be achieved by making the ZMP of a bipedal robot stay
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Fig. 6. ZMP stability criterion. (a) Stable ZMP position. (b) Unstable ZMP
when it goes out of the foot support.

(a) (b)

Fig. 7. Demonstration of the simplest passive dynamic walker as well as a
real PDW robot prototype from Delft University [116]. (a) Simplest passive
dynamic walker. (b) Real robot from the Delft University of Technology.

within the convex hull of the foot support area during
walking. ZMP is frequently used as a guideline in de-
signing reference walking trajectories for many bipedal
robots. An illustration of the ZMP criterion is shown in
Fig. 6. Recently, Sardain and Bessonnet [92] proposed a
virtual COP-ZMP, which extended the concept of ZMP to
stability on uneven terrains. Another criterion for quasi-
dynamic walking is the foot rotation point (FRI), which
is a point on the ground where the net ground reaction
force acts to keep the foot stationary [36]. This walking
stability requires to keep the FRI point within the convex
hull of the foot support area. One advantage of FRI point
is that it is capable of indicating the severity of instability.
The longer the distance between FRI and the foot support
boundary, the greater the degree of instability.

3) Dynamic Stability: The stability of dynamic walking is a
relatively new stability paradigm. The most well-known
criterion was introduced by McGeer [67], who proposed
the concept of “passive dynamic walking” (PDW) in 1990.
The stability of a bipedal robot depends solely on its dy-
namic balance. As a result, this stability criterion has the
fewest artificial constraints, and thus has more freedom to
yield efficient, fast and natural-looking gaits. A number of
dynamic bipedal walking robots have been built since the
1990s. A simplified example of PDW is shown in Fig. 7.

Table I compares the walking speeds of some typical bipedal

robots using different stability criteria. In general, the static
stability is straightforward to ensure stable gaits, but the result-
ing gaits are usually very slow and energy inefficient. Quasi-
dynamic stability is less restrictive than static stability, because
the COP or COM of a bipedal robot is allowed to be outside
of the support polygon of the feet. However, the resulting gait
is still restricted in terms of efficiency and speed. Dynamic
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TABLE I
WALKING SPEED OF BIPEDAL ROBOTS USING DIFFERENT STABILITY CRITERIA
(THE RELATIVE SPEED = WALKING SPEED/LEG LENGTH)

Stability Relevant Walking speed | Leg length | Relative speed
Criterion Robots (m/s) (m)

Static SD-2 [89] 0.12 0.51 0.24
HRP-2L [46] 0.31 0.69 0.44
Quasi QRIO [26] 0.23 0.30 0.77
-Dynamic | ASIMO [38] 0.44 0.61 0.72
Meta [97] 0.58 0.60 0.97
Dynamic Rabbit [17] 1.2 0.8 1.50
RunBot [32] 0.8 0.23 3.48
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Fig. 8. Categorization of bipedal walking control approaches. Machine learn-
ing algorithms have been applied in each group of approaches to enhance their
control performance in terms of adaptability, robustness, and scalability.

stability has the fewest restrictions that allow more freedom to
generate fast and natural walking patterns [19].

B. Control Techniques for Bipedal Robots

Various control approaches have been developed for bipedal
robot locomotion. Two main streams can be distinguished: Dy-
namic model-based methods and biologically inspired methods.
This categorization is further detailed in Fig. 8.

1) Model-Based Control Approaches: With this approach,
the kinematics and the dynamics of a bipedal robot as well as its
environments are assumed to be precisely modeled. Trajectory-
tracking methods have been intensively studied, based on tra-
ditional control theory. Trajectories of joint angles or torques
are obtained either from real-world human walking or by using
walking pattern generators. Most controllers of this type use the
ZMP stability criterion. The reference trajectory of a robot is
defined such that the resulting ZMP motion is stable at all times.

Park and Chung [76] applied an adaptive trajectory tracking
controller to a 6-DOF bipedal robot using online ZMP infor-
mation. However, the adaptation only allowed small changes in
the prescribed trajectory. To deal with larger disturbances, Denk
and Schmidt [21] proposed a method to use a set of trajecto-
ries. Their bipedal robot was able to choose different trajectories
for different situations. However, the drawback of this method
is that in order to deal with many possible situations, it needs
a large set of trajectories and switching between the trajec-
tories which may cause unexpected effects in real-time experi-
ments. An improved method was presented by Chevallereau and
Sardain [17], where a continuous set of parameterized trajec-
tories was used to avoid the switching problem. However, it is
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still very costly to design appropriate trajectories for each joint
of a bipedal robot.

Robust control theory has also been applied to bipedal walk-
ing robots. Tzafestas et al. [105] applied a sliding-mode control
to a nine-link bipedal robot. The sliding-mode controller en-
sured the joint trajectories to move toward a sliding surface and
reach it from any initial condition within a finite time horizon.
Since the control law involved a switching function, the de-
signed walking robot suffered from the undesirable effects of
control signal chattering.

MPC for bipedal walking was investigated by Kooij et al. [57]
and Azevedo et al. [8]. Based on MPC, the walking control prob-
lem reduces to a quadratic optimization problem. The physical
limitations, the geometry of environments, and the motion spec-
ifications are described as a set of mathematical equations and
inequalities. By adjusting the parameters of these constrains, a
simulated bipedal robot managed to walk on a slope. However,
the long optimization time makes this method unsuitable for
real-time implementation.

There are also some studies that consider the single-support
phase of bipedal walking as an inverted pendulum. As a result,
a number of bipedal walking control systems have been built
based on the simple inverted pendulum model (IPM) and its
variations [46], [47], [99], [103]. Kajita and Tani [47] built a
2-D bipedal model based on a linear inverted pendulum, and
developed an inverted pendulum-based control scheme for their
bipedal robot to walk on rugged terrains. In a further study, they
extended the control scheme to 3-D by analyzing the dynamics
of a 3-D inverted pendulum. Albert and Gerth [2] proposed two
models called TMIPM (two masses IPM) and MMIPM (multiple
masses IPM) for the path planning of a bipedal robot without
a trunk. This method can be considered as an extension of the
concept of IPM and achieved higher gait stability compared with
other IPM approaches.

2) Biologically Inspired Approaches: Animals are capable
of moving with elegance and in a highly energy-efficient way.
There is a considerable amount of literature that focuses on bio-
logically inspired control systems for bipedal robots. According
to different types of biological aspects studied, the research of
biologically inspired bipedal walking control can be divided into
four major groups: PDW-based methods, neural oscillator-based
methods, fuzzy control methods, and evolutionary computing-
based methods.

A PDW robot [67], inspired by human walking down a slope,
exhibits a very efficient and natural dynamic walking pattern.
However, passive dynamic walkers lack controllability and have
poor robustness. Several researchers expanded McGeer’s work
to actuate PDW robots while keeping the energy efficiency and
natural walking properties of PDW. Goswami et al. [35] pre-
sented a control policy to increase the robustness of a two-link
PDW walker. Collins et al. [19] actuated a 3-D PDW walker
by implementing ankle torque to the robot. Wisse [116] built
a 3-D PDW-based walker which can walk on a level surface
through a pneumatic actuator mounted on the hip of the robot.
Tedrake [104] actuated a 3-D PDW walker and achieved effi-
cient and natural bipedal walking on a flat surface by using an
RL controller.
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Fig. 9. (a) Schematic structure of a coupled neural oscillator. (b) Basic struc-
ture of a neural oscillator-based actor-critic RL controller.

Neural oscillator-based approaches are inspired by central
pattern generators (CPGs) which have been identified in the
spinal cord of many animals. CPGs are considered to be re-
sponsible for generating rhythmic movements that are robust to
environment changes [68]. A CPG controller consists of coupled
neural oscillators, some of which are excitatory and the others
are inhibitory [see Fig. 9(a)]. Each pair of coupled oscillators
controls one joint of a robot. Through proper coordination be-
tween these oscillators, different types of walking patterns can
be generated [73]. The most prominent advantage of using CPG
is that the control signal produced by CPG is effectively re-
stricted within the space determined by the inherent rhythmic
patterns of the oscillators. The search for an optimal policy
becomes easier than that with no restrictions.

Fuzzy logic is another popular biologically inspired paradigm
in bipedal robot control. A fuzzy controller usually consists
of linguistic TF-THEN rules which capture human knowledge.
A number of fuzzy control systems have been developed for
bipedal walking robots [51], [118]. Evolutionary computation
approaches, such as genetic algorithms (GAs), are inspired by
the biological evolution mechanisms of reproduction, crossover,
and mutation. GAs have been shown to be effective in exploring
optimal solutions in large spaces for many complex control
problems [34]. GA-based methods have also been used to obtain
optimal control solutions for bipedal walking [15], [106], [121].

3) Implementation of Learning Control: Human walking is
a marvel of coordination, all aspects of movement control need
to be meticulously adjusted. In addition, the gait should be adap-
tive to different environments. For example, walking on ice is
different from walking on solid ground, and walking uphill is
different from downhill. No matter whether model-based or bio-
logically inspired approaches are employed, there is an intrinsic
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need to equip bipedal robots with adaptive control strategies.
Therefore, the key step of most control system designs becomes
how one can formulate the control scheme so that the parameter
tuning or policy adjustment can be easily and efficiently carried
out while avoiding high computational workload for real-time
implementation.

It is noticed that traditional adaptive control methods usu-
ally suffer from sophisticated parameter tuning process and of-
ten run into the problems of mathematical tractability, limited
extensibility, and limited biological plausibility. On the other
hand, learning algorithms are generally less restrictive and are
capable of acquiring appropriate control policies through an
autonomously self-tuning process. Learning control has three
distinguishable advantages as follows.

1) Learning algorithms are capable of learning a good
control solution automatically, thus do not highly rely on
the modeling of the robot’s dynamics.

2) Learning controllers can easily adapt to changes of the
robots’ dynamics or environment. This means that a learn-
ing control scheme can be transferred from one robot to
another even they have quite different dynamics.

3) Control policies can be continuously improved with an
increasing experience as the learning process proceeds.

Learning control is promising for walking robots that have to
cope with unstructured environments without continuous human
guidance. As shown in Fig. 8, machine learning algorithms
can be implemented in each mainstream of control methods
to improve the control performance of adaptability, robustness,
and scalability [40], [90], [91]. The following section provides a
comprehensive review of learning control techniques that have
been applied to bipedal walking robots.

IV. LEARNING ALGORITHMS FOR BIPEDAL ROBOT CONTROL

In the following sections, we discuss how learning algorithms
have been applied to bipedal walking control.

A. Supervised Learning Approaches

SL methods learn to perform a task with the assistance of a
teacher, who provides target input-output information to train
a control system. An SL agent updates control parameters to
minimize the difference between the desired and actual outputs
of a system. Four popular SL learning approaches in bipedal
walking control are discussed as follows.

1) Backpropagation-Based Neural Control Methods: Wang
etal.[112] trained a multilayer perceptron (MLP) to learn a pre-
designed controller for a three-link bipedal robot via a standard
BP algorithm. Although the MLP was only trained to mimic a
predesigned controller, the learned neural controller provided a
superior performance against large disturbances, because of the
NN’s generalization. BP-based MLPs are often employed in tra-
jectory tracking control of bipedal walking robots. For example,
Juang and Lin [45] applied a three-layer MLP to control a sim-
ulated five-link bipedal robot. A variation of the BP algorithm
called backpropagation through time was employed to train the
neural controller to drive the bipedal robot to follow a set of
reference trajectories of hip and swing leg. After training, the
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bipedal robot was able to walk in a stable fashion on a flat sur-
face. Later on, the authors improved the neural control scheme
by adding a slope-information MLP, which was trained to pro-
vide compensated control signals to enable the bipedal robot
to walk on slopes. Shieh et al. [100] applied BP-based MLP
to a real bipedal robot with 10 DOFs. The MLP was trained to
control joint angles to follow the desired ZMP trajectories. Ex-
perimental validation confirmed that the bipedal robot achieved
a stable gait on a flat surface. It was also capable of adjusting
the walking posture and keeping balanced walking when the
ground was uneven or inclined.

BP-based neural control has gained popularity since it is rela-
tively simple to implement and generally works well. However,
the NNs obtained are usually very difficult to analyze and ex-
plain due to their complicated internal structure. A common
disadvantage of BP-based methods is that the learning process
is usually slow and inefficient. Moreover, the training may get
stuck in local minima and result in suboptimal solutions.

2) Locally Weighted Learning Methods: Compared with
BP-based neural learning methods, LWL methods offer a more
understandable structure to learn complex nonlinear control
policies. LWL approaches have achieved impressive success in
some real-time humanoid robot learning control problems, such
as complex inverse dynamics learning, and inverse kinematics
learning [94]. Since LWL has low computational complexity
for learning in high-dimensional spaces, it has demonstrated
a very good potential to deal with high-dimensional learning
problems. Nakanishi et al. [72] applied LWL to train a five-link
biped to imitate human-demonstrated walking trajectories. The
trajectories of the robot were represented by a nonlinear function
approximator using local linear models. Through tuning of the
parameters of local models, the LWL method enabled the biped
to walk stably on a flat surface. Loken [63] applied LWPR to two
bipedal robots with three-link and five-link, respectively. LWPR
was used as an efficient function approximator that builds local
linear regressions of adaptive nonlinear control policies. The
locally structured control policies enabled the bipeds to follow
the reference human walking motions on a flat surface very fast.

3) Support Vector Machine Methods: SVM techniques pro-
vide powerful tools for learning classification and regression
models in high-dimensional problems. A bipedal walking con-
trol system often has high-dimensional feedback sensory sig-
nals; SVM can be applied to classify feedback signals and
provide categorized input signals to the control system. Kim
et al. [53] applied SVM to detect the falling of a bipedal robot-
based accelerometer and force sensor data. Ferreira et al. [30]
proposed a ZMP-based control strategy of walking balance us-
ing support vector regression (SVR). The ZMP-based controller
was designed based on a simulated robot model. When imple-
mented on the real bipedal robot, the designed controller would
generate significant errors between the real and desired ZMP
positions due to the difference between the real robot and its
mathematical model. The difference between the real and de-
sired ZMP positions can be offset by adaptively adjusting the
angle of the robot’s torso. The SVR was used to calculate the
correction of the robot’s torso based on the real ZMP positions
and its variations to the desired ZMP positions. The training of
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SVR was based on simulation data and it successfully enabled
the real bipedal robot to keep stable walking through adaptive
torso control.

4) Decision Tree Methods: Decision tree methods have
also been proposed to tackle the problems of adaptive walk-
ing control under varying environmental conditions. Miyashita
et al. [69] designed a decision tree-based control system using
C4.5. The tree-based adaptive control strategy enabled a bipedal
robot to cope with several walking surfaces with different elas-
ticity and viscous friction coefficients. Once a decision tree was
obtained, the robot was capable of selecting appropriate control
actions when it walked on different types of terrains.

B. Reinforcement Learning Approaches

We have discussed several successful examples of supervised
learning for bipedal walking control. However, in many cases,
it is either extremely hard or expensive to find a good “teacher,”
such as the gait trajectories on uneven surfaces. Moreover, learn-
ing only from a teacher allows an SL controller to act at most
as good as the teacher. On the other hand, RL is powerful since
a learning agent is not told which action it should take; instead
it has to discover through interactions with the system and its
environment which action yields the highest reward. In the fol-
lowing, the most popular RL methods for bipedal robot control
are presented.

1) Actor-Critic Learning: Actor-critic learning generally
approximate two functions separately, namely, the state value
function and the control policy function. Different function ap-
proximation methods result in different types of actor-critic
methods as discussed in the following.

a) Multilayer perceptron: RL has been widely used to
train MLPs for bipedal robot walking. Salatian et al. [89], [90]
applied RL to train an MLP controller for a simulated bipedal
robot with 8 DOFs. The control system was designed to main-
tain the COP of the robot within the foot support region during
walking. The foot force signals were used to calculate the posi-
tion of COP. An MLP was trained by RL to map the relationship
between the foot forces and the adjustment of joint positions. In
particular, every joint of the robot was associated with a neuron
called joint neuron; every joint neuron was attached to two pairs
of neurons, called direction neurons. Each neuron possessed
a value of activation function called neuron value. During the
learning process, a joint neuron with the maximum neuron value
was selected to modify the position of the corresponding joint,
and the direction neuron was selected to determine the direction
of the modification. If the selected joint and direction neuron
result in a correct motion (the robot remains stable), this se-
lection was reinforced by increasing the corresponding neuron
value. Otherwise, the neuron value was reduced. The weights of
the MLP were adjusted until the force sensors indicated that the
robot had achieved a stable gait. The RL-trained MLP controller
successfully made the bipedal robot walk on a flat surface. The
biped was then placed on a slope and a new stable gait was
found after 20 rounds of trials. However, since this study used
a static walking stability criterion (COP), the resulting gait is
very slow compared with normal dynamic walking.

b) Neural oscillator: Neural oscillators have become a
focus of interest in bipedal walking control in recent years [11].
The most popular method is called CPG as we have mentioned
in Section III-B2. Neural oscillators with appropriate weight
settings are capable of generating different types of stable walk-
ing patterns [73]. This kind of methods is discussed here since
most neural oscillator-based controllers are trained by RL algo-
rithms in the bipedal robot literature. The basic structure of a
typical neural oscillator is shown in Fig. 9 (a), and the schematic
structure of a general neural oscillator-based control system for
bipedal robots is given in Fig. 9 (b).

Mori et al. [70] presented a CPG-based actor-critic RL con-
troller. There were 12 pairs of neurons; each composed of a pri-
mary neuron and a supplementary neuron. Each supplementary
neuron was solely connected to its primary neuron by excitation-
inhibition mutual connections. A combination of two primary
neurons and two supplementary neurons behaved as a neural
oscillator. Each neural oscillator was responsible for control-
ling one joint of a robot. The neural oscillators were trained
by an actor-critic RL algorithm. The actor (neural oscillators)
mapped the sensory feedback signals into joint torques, and the
critic predicted the expected cost in the future. The parameters
of the actor were updated so that the future cost predicted by
the critic became smaller. The critic was updated based on a
policy gradient method. A lower-dimensional projection of the
value function was used to reduce the complexity of estimating
the original value function in a high-dimensional space. After
50 000 learning episodes, the simulated biped achieved stable
walking on a flat surface. The gait learned was also robust to
environmental disturbances such as up and down slopes. Their
simulation experiments were quite successful. However, one big
disadvantage of the method is that too many training episodes
were required. A real robot cannot afford so many failures dur-
ing the training.

Matsubara et al. [66] combined a CPG-based RL controller
with a state-machine. The CPG controller was composed of two
pairs of extensor/flexor neurons to exert hip torques to the left
and right legs, respectively. The state-machine controlled the
knee joints according to the four transition states defined by the
hip joint angles and the foot placement information. A policy
gradient method was used to train the neural oscillators. The
CPG-based learning controller was able to acquire an appropri-
ate control policy after a few hundred of simulated trials. The
controller trained in simulation was successfully applied to a
five-link 2-D real bipedal robot. This study demonstrated that
the proposed RL controller was robust against the mismatch be-
tween the simulation model and the real robot, as well as small
ground disturbances.

In most neural-oscillator-based controllers, each oscillator is
allocated at a joint and exerts joint torque to drive walking mo-
tions. As the number of neural-oscillators increases, it becomes
more difficult to obtain appropriate cooperation and coordina-
tion for all the oscillators, especially for the cases of a robot
system with many DOFs. Endo et al. [26], [27] proposed a
novel arrangement of neural-oscillators, which only uses six
pairs of neural-oscillators to control a 3-D full-body humanoid
robot with 38 DOFs. A policy-gradient-based actor-critic RL
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Fig. 10.  Schematic representation of CMAC learning.

algorithm was used to train the neural-oscillator-based con-
troller. At first, the control scheme was applied to a simulated
bipedal robot. It took 1000 trials on average to enable the biped
to walk stably on a flat surface. The RL controller obtained
from simulation was successfully implemented on a 3-D real
robot. Most recently, Park et al. [75] developed a CPG con-
troller to generate full-body joint trajectories for a real 26-DOF
bipedal robot, called HSR-IX. The neural oscillators in the CPG
were designed to generate rhythmic control signals for each
joint. The parameters of the CPG controller were optimized by
a quantum-inspired evolutionary algorithm using a simulated
robot model. The optimized CPG controller was then applied to
the real robot, which was able to walk stably on a flat surface
using the fine-tuned CPG parameters in real experiments.

c) Cerebellar model arithmetic controller: CMAC was
first created as a simple model of the cortex of cerebellum by
Albus in 1975 [3]. Since then, it has been used in a wide range of
applications. Besides its biological relevance, the main reason
for using CMAC is that it operates very fast and has a potential
in real-time control problems. A schematic structure of CMAC
learning is shown in Fig. 10.

Miller [40] presented a hierarchical controller which com-
bines three CMAC networks, two of which were used for
front/back balance and right/left balance, and the third one was
used to learn kinematically consistent robot postures. The train-
ing of the CMAC networks was realized by RL. The reward
function was defined by the difference between the desired and
measured foot placement on the ground. The proposed learning
controller was applied to a real ten-axis bipedal robot. After
training, the bipedal robot was capable of keeping dynamic bal-
ance on a flat surface. However, the resulting walking speed
was very slow and was also sensitive to ground disturbances.
Kun and Miller [59] proposed an improved approach. The com-
plete control structure consisted of high-level and low-level con-
trollers. The high-level controller had seven components: gait
generator, simple kinematics block, and five CMAC controllers.
The CMACs were used for compensation of right and left lift-
lean angle correction, reactive front-back offset, right-left lean
correction, right and left ankle correction, and front-back lean
correction. The training of the CMACs was realized by RL.
The reward was defined based on the ZMP, which can be calcu-
lated from foot force signals [110]. The proposed RL controller
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enabled a complex 3-D humanoid robot to maintain dynamical
walking balance. However, more research efforts are needed to
increase the walking speed to achieve natural dynamic walk-
ing. Smith proposed a CMAC controller called FOX [101]. The
weights of the CMAC were updated by RL with an eligibility
trace assigned to each weight. The eligibility was used to update
weights in a manner analogous to the cerebellar modulation of
spinal cord reflexes in human movement. The proposed control
scheme was applied to a simulated bipedal robot with 18 DOFs.
The simulated bipedal robot was able to walk with flexible gait
patterns on both flat and slope surfaces.

In general, CMAC has the quality of fast learning and efficient
digital hardware implementation due to its special architecture.
However, a serious drawback of CMAC is its large memory re-
quirement. Especially when the state space is high dimensional,
CMAC may become impractical to implement due to the huge
memory it requires.

d) Function approximators: Various function approxima-
tors are also employed to estimate state value function and con-
trol policy function. Since most function approximators used
in RL are usually differentiable, the policy gradient-based RL
algorithms play an important role in this type of methods. An
excellent example is that of Tedrake [104], who applied a policy
gradient-based actor-critic RL controller to a 3-D 9-DOF real
bipedal robot. Both the control policy function and the state
value function were represented by a linear combination of ba-
sis functions. All the parameters of the control policy and state
values were initialized at zero. The unactuated robot exhibited
passive dynamic walking down a mild slope of 0.03 rad, which
was taken as the reference walking pattern. Several fixed points
on the corresponding Poincaré map of the reference pattern were
used to train the actor-critic RL controller. The reward was given
by the difference between the actual and desired fix points on
the return map. The control policy and the state values were
both updated by the TD (temporal difference) error. The most
attractive part of this work is that the robot was able to learn a
stable walking pattern from scratch. In particular, the robot was
able to learn in about 1 min to start walking from standing still.
The walking orbit converged to the desired limit cycle in less
than 20 min on average.

Morimoto et al. [71] applied receptive field weighted regres-
sion (RFWR) [93] as a function approximator for the control
policy and the state-value functions in an actor-critic RL frame-
work. The proposed RL controller was tested on a five-link
real bipedal robot. The walking performance was evaluated by
comparing four fixed points on the Poincaré map with their ref-
erence values extracted from human walking patterns. The robot
acquired a control policy of stable walking after about 100 trials
of learning on a flat surface.

Most of the existing learning methods only focus on numer-
ical evaluative information. However, in real life, we often use
linguistic critical signals such as “near fall down,” “almost suc-
cess,” “slow,” “fast” to evaluate human walking. Fuzzy evalua-
tion feedback signals are considered to be much closer to human
learning in real world [12]. A number of researchers have in-
corporated fuzzy-logic in designing RL controllers for bipedal
robots [43], [51], [118]. A general flowchart of the information
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integration for a fuzzy logic-based controller is shown in
Fig. 11.

Zhou et al. [122], [123] applied fuzzy logic to an RL-based
neural controller (see Fig. 12), which consisted of three parts: ac-
tion selection network (ASN), action evaluation network (AEN),
and stochastic action modifier (SAM). Both ASN and AEN were
constructed in neuro-fuzzy architectures in the form of five-layer
NN, while the SAM was used to make a tradeoff between explo-
ration and exploitation during learning. The proposed learning
structure was actually a modified version of actor-critic RL.
The critic (AEN) was updated by TD error, the actor (ASN) was
updated by the BP algorithm. The reward was generated by a
fuzzy rule base, which represented the expert knowledge derived
based on the ZMP stability criterion. The proposed fuzzy-RL
controller was tested with a simulated bipedal robot.

Most recently, Kati¢ and Vukobratovic [51] proposed a fuzzy
logic-integrated control structure. The control system consisted
of two parts. A dynamic controller was used to track a pre-
designed nominal walking trajectory; a fuzzy actor-critic RL
controller was used to make efficient compensation of ZMP re-
actions during walking. The walking performance (reward) was
evaluated by fuzzy rules obtained from human intuitive knowl-
edge. Based on tracking errors and rewards, the critic generated

reinforcement signals, by means of which the TD error was
calculated and used to update the actor and the critic. Fuzzy
evaluation was considered much closer to the human’s evalua-
tion than regular numerical values. Their simulation results also
showed that fuzzy evaluation considerably sped up the learning
process.

e) Integration of evolutionary computing: Evolutionary
computation techniques such as genetic algorithms (GAs) have
been widely used for many complex problems in optimization
and machine learning [34], [115]. Some researchers have also
incorporated evolutionary computation in a RL framework to
obtain optimal control solutions for bipedal robots. A typical
example in this area comes from Zhou et al. [121] who pro-
posed a GA-based actor-critic RL controller for bipedal robot
walking. It differs from the traditional actor-critic methods in
that the actor was updated by a GA instead of using the TD
error, while the critic was still updated by the TD error. With
the global optimization capability of GA, the learning controller
was able to solve the local minima problem of the traditional
gradient-based actor-critic RL algorithms.

2) Q-Learning: Instead of constructing the critic and actor
functions separately, Q-learning builds a single-value function
called Q-value function, in the (discretized) state-action space.
RL with tabular Q-value function has been proven to converge
to the optimal policy as the number of trials tends to infin-
ity [52]. Compared with actor-critic algorithms, Q-learning is
easier to implement since the Q-function is actually a lookup
table indexed by discrete state-action pairs. There are several
applications of Q-learning to bipedal walking robot control.

Wang et al. [113] proposed a Q-learning controller for a sim-
ulated two-link passive dynamic walking robot, which is an
abstraction of a mechanical prototype. The state represented
the velocity of the stance leg, and the action was an additional
torque applied to the hip joint. Simulation results demonstrated
that the bipedal robot quickly learnt to apply additional hip
torque to adapt its walking gaits to ground disturbances within
20 trials. The bipedal robot was able to walk through a test
scenario with 16 different step-down disturbances, which were
up to 10% of the leg length. Schuitema et al. [97] applied
Q-learning to a seven-link simulated bipedal robot. The state
space of the bipedal walking problem consisted of six dimen-
sions: Angle and angular velocity of upper stance leg, upper
swing leg, and the lower swing leg. The action was the torque
exerted to the hip joint. The total 7-D state-action space resulted
in a large Q-table with 1 000 000 state-action pairs. Simulation
results showed that a stable gait was achieved on a flat surface
within 20 min of learning on average. Er and Deng [28] proposed
anovel fuzzy Q-learning (FQL) framework, which was capable
of generating and tuning fuzzy rules automatically by the self-
organizing fuzzy inference. Er and Zhou [29] then applied this
learning framework to enable a bipedal robot to walk on uneven
terrains by using adaptive trunk control. The FQL system was
started with an initial set of fuzzy rules, and learned to improve
the ZMP stability through RL and fuzzy-rule updating. Simu-
lation results showed that their bipedal robot achieved a good
ZMP stability on uneven surfaces. Chew and Pratt [18] applied
Q-learning to a 3-D biped model with 6 DOFs for each leg. The
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Q-learning algorithm was employed to train a CMAC network,
which successfully learned the control strategy of the swing leg
to achieve stable walking with variable desired walking speed.

C. Unsupervised Learning Approaches

UL does not need either a teacher or any evaluative feedback
to acquire a control policy. Instead, it builds underline structures
or associative networks for input data. For bipedal robot control,
there are two main UL approaches in the literature: Clustering
methods and Hebbian learning. Clustering techniques discover
structures in data, while Hebbian learning primarily aims to find
an associative network between inputs and control actions.

1) Clustering: Clustering is a very active field of research.
It is usually not used to learn control policies directly; instead,
it plays a role in the analysis and reduction of raw data. For ex-
ample, we have mentioned that CMAC-based neural controllers
have fast computation but require large memory. Hu et al. [39]
applied a clustering technique in a bipedal walking system to
reduce the memory requirement of a CMAC-based learning
controller.

2) Differential Hebbian Learning: Unsupervised Hebbian
learning has not been studied for bipedal robot control until
the recent studies of Worgotter and colleagues [79]-[81]. They
developed a modified version of classical Hebbian learning, dif-
ferential Hebbian learning, which is applicable to closed-loop
control systems. The basic architecture of Hebbian learning con-
trol is shown in Fig. 13. The control signal is derived from the
correlations between two temporally related input signals: One
is an early input x; called presynaptic activity and the other one
is a later input x( called postsynaptic or reflex activity. Each
time when the robot falls, a strong reflex signal is triggered.
The reflex signal together with the predictive signal drives the
weight updating in Hebbian learning. The learning goal is to
change the gait parameters in an appropriate way in order to
prevent the robot from falling.

An impressive application of differential Hebbian learning
to real bipedal robot control was conducted by Manoonpong
et al. [64], [65]. They designed an adaptive neuronal control
system for a real bipedal robot called RunBot, which has four
active leg joints (left/right hips and knees) and an upper body
component that can be actively moved either backward or for-
ward to shift the center of mass. The neuronal control scheme
has two modules: One controls leg joints and the other con-
trols the upper body component. The neuronal controllers have
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a distributed implementation at each active joint. The differen-
tial Hebbian learning rule was applied to adjust the synaptic
strengths of neurons according to the temporal relation between
their inputs and outputs. With no explicit gait calculation or
trajectory control, the neuronal control network was capable of
synchronizing the leg and body movements of the robot for a
stable locomotion. In addition, with learned parameters on a flat
surface, the robot was also able to adapt its gaits to an 8° ramp
after only three to five falls. The most attractive part of this study
is that the obtained stable walking fully relies on its neuronal
control network in an unsupervised manner.

V. CONCLUSION AND OUTLOOK

This paper gave an overview of the state-of-the-art learn-
ing algorithms, and then discussed their applications to bipedal
walking robots according to three learning paradigms, namely,
SL, RL, and UL. Each learning strategy has its merits as well
as drawbacks. A comparison of the learning methods discussed
is summarized in Table II. In general, the theory of learning
control is still in its infancy, and has to cope with several chal-
lenges. First, many sophisticated machine learning algorithms
(e.g., RL and Hebbian Learning) are still not understood well
enough to always converge in acceptable time for real robot
control. Theoretical guarantee of convergence are not always
available. Second, a real-world robot typically cannot afford
many training and evaluation runs. Learning algorithms need to
converge faster in practice with an estimate of convergence rates
and training times. Moreover, the learning parameters of many
learning algorithms (such as NNs) are often difficult to set.

This comprehensive survey demonstrated that learning con-
trol techniques achieved impressive results in many bipedal
walking control problems. However, the performance of learn-
ing control systems for real-time high-dimensional bipedal
robots is still by far not good enough in terms of stability, adapt-
ability, and robustness. As the complexity of bipedal walking
control systems scales up in complex environments, the problem
of cooperation of many different actuators becomes severe in
high-dimensional spaces. Therefore, constructing a hierarchical
learning architecture might be promising to tackle complex con-
trol problems in high-dimensional spaces. Hierarchical learning
approaches decompose a problem into subproblems which can
work with smaller state spaces and simpler control functions.
The local solutions of the subproblems can be combined to
solve the original problem. Careful decomposition of a com-
plex control problem in a hierarchical way really helps reduce
the original problem into a tractable one. However, how to make
proper hierarchical learning on real-time bipedal walking robots
is still a challenging and less studied research area.

Human brain undoubtedly implements the most efficient
learning control system available to date. It is believed that
human beings make full use of the three learning paradigms:
UL, SL, and RL. In our view, as shown in Fig. 14, the ef-
fective integration of the three learning paradigms as well as
strategic planning tools in a hierarchical framework should be
an inevitably trend in designing learning control systems for
future intelligent bipedal walking robots. The great potentials
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TABLE II

COMPARISON OF DIFFERENT CONTROL STRATEGIES

Learning Mechanism Algorithms Advantages Disadvantages References
BP is suitable to train a NN to learn complex is gradient based, may get trapped | Wang et al.
relationships between input and output in local minima. [112], Juang
patterns, such as inverse kinematic and slows down dramatically as the | and Lin [45],
inverse dynamics of a robot model. number of hidden layers and neu- | Juang [44]
rons in a NN increases.
leads to global optimization models. is sensitive to the choice of kernel | Ferreira et
has great ability to classify feedback sig- functions, which are still left up to | al. [30], Kim
nals and provides categorized input sig- the user. et al. [53],
SVM nals to a control system. the inherent quadratic programming | Kang et al.
its computational complexity does not requires extensive memory in large- | [49]
depend on the dimensionality of input scale tasks.
space. optimal design of multiclass SVM
is still an open problem.
Supervised Learning achieves low computational complexity may have difficulties to define local- | Atkeson et
and higher flexibility to approximate ity appropriately. al. [6], [7],
LWL complex nonlinear functions (such as its results are sensitive to the choice | Nakanishi
robot models) by local kernel functions. of distance metric, the number of | et al. [72],
is capable of fast and efficient learning in linear functions, and the effective | Loken [63]
high dimensional space. range of local kernel functions.
is easy to understand and implement, and may fail if data are very noisy. Miyashita
does not require expensive modeling. ignores the relationships among the | et al. [69],
. is easy to encode expert knowledge in a attributes of input data. Wong et al.
Decision tree model. [117]
Tree works fast and can perform well for large
data set in a short time.
responds to smoothly varying states with training process is more complex | Zhou  and
smoothly varying actions. compared to Q learning, since both | Meng [122],
constructs a continuous mapping from state function and action function | [123],
Actor- states to actions. It is advantageous to are required to be properly adjusted. | Tedrake et
Critic treat both states and actions as continuous is sensitive to its exploration policy, | al. [104],
variables in many control problems. since state value is updated based on | Katié et
has good potentials to learn in high di- the current action policy. al. [517,
mensional continuous spaces. usually has low learning rate. Matsubara
et al. [66],
Reinforcement Learning Smith [101]
is easy to understand, implement, and learning rate increases exponentially | Er and
tune learning parameters, since learning as the number of states and actions | Deng [28],
problem is reduced to search a lookup increases. Schuitema
table of state-action pairs. may have poor generalization for | et al. [97],
Q- requires low computation and has fast unexplored state-action spaces. Wang et al.
learning learning rate with convergence guaran- generally only considers states and | [113]
tees in theory. actions in discrete space.
is exploration-insensitive, since it learns
without necessarily following the current
policy.
is effective to extract knowledge from is a subjective process, which is | Kang et al.
Clustering large amount of data, such as vision data. sensitive to feature extraction and | [49], Hu et
can be used for preprocessing feedback similarity measures. al. [39]
signal in a control system.
Unsupervised Learning
mimics human reflex control. needs carefully design the timing | Porr et al.
Hebbian exhibits natural walking patterns in some and coordination of each neural os- | [80], [79],
Learning real-time experiments, which seem to be cillator. [81]

biologically plausible.
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and capabilities of bipedal robots have not been fully utilized.
The performance improvements that bipedal robots can gain by
incorporating suitable learning control techniques are huge.
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