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Abstract—There is an urgent need for a quick screening process
that could help neurologists diagnose and determine whether a
patient is epileptic versus simply demonstrating symptoms linked
to epilepsy but actually stemming from a different illness. An
inaccurate diagnosis could have fatal consequences, particularly in
operating rooms and intensive care units. Electroencephalogram
(EEG) has been traditionally used, as a gold standard, to diagnose
patients by evaluating those brain functions that might correspond
to epilepsy and other brain disorders. This research therefore
focuses on developing new classification techniques for multichan-
nel EEG recordings. Two time-series classification techniques,
namely, Support Feature Machine (SFM) and Network-Based
Support Vector Machine (SVM) (NSVM), are proposed in this
paper to predict from EEG readings whether a person is epileptic
or nonepileptic. The SFM approach is an optimization model
that maximizes classification accuracy by selecting a group of
electrodes (features) that has strong class separability based on
time-series similarity measures and correctly classifies EEG sam-
ples in the training phase. The NSVM approach integrates a
new network-based model for multidimensional time-series data
with traditional SVMs to exploit both the spatial and temporal
characteristics of EEG data. The proposed techniques are tested
on two EEG data sets acquired from ten and five patients, re-
spectively. Compared with other commonly used classification
techniques such as SVM and decision trees, the proposed SFM and
NSVM techniques provide very promising and practical results
and require much less time and memory resources than traditional
techniques. This study is a necessary application of data mining to
advance the diagnosis and treatment of human epilepsy.

Index Terms—Electroencephalogram (EEG) classification,
epilepsy diagnosis, multidimensional time series, optimization,
pattern recognition.
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I. INTRODUCTION

E PILEPSY, a disease characterized by a tendency for recur-
rent seizures, is one of the most common brain disorders

in the world, coming second only to strokes. Currently, about
3 million Americans and 40 million people worldwide (about
1% of human population) suffer from epilepsy [1]–[3]. As
common as epilepsy is, the accuracy of epilepsy diagnosis
varies greatly, from a misdiagnosis rate of 5% in a prospective
childhood epilepsy study to at least 23% in a British population-
based study [4]. In fact, the rate may be even higher in ev-
eryday practice. For instance, temporal lobe epilepsy is a less
common form of epilepsy that does not result in the typical
physical seizures. Rather, patients suffer from symptoms such
as depression, moodiness, anger, or irritability. Misdiagnosis
of this condition as depression is extremely common [3]. In
today’s brain diagnosis studies, particularly in epilepsy stud-
ies, the electroencephalogram (EEG) recordings are the most
commonly used neurophysiological signal employed to eval-
uate brain functions that might be related to brain disorders
and abnormal cognitive functions. Neurologists are trained to
recognize certain prominent patterns in EEG signals that reflect
the brain’s activity. For diagnosis purposes, pattern recognition
is a natural method that neurologists employ to identify the
presence of a disease such as epilepsy. However, neurologists
have to “eye ball” EEG signals, spatially and temporally, in
an attempt to recognize abnormal patterns (e.g., epileptiforms)
in the brain activity. “Eye balling” these massive signals for
hours or even days can be very tedious and challenging. For
neurologists, there is an urgent need for new automated signal-
processing and pattern-recognition techniques that help these
physicians diagnose, with more accuracy and speed, patients
who have epilepsy or other related brain disorders.

The main application of this study is to improve current
epilepsy diagnosis by developing a new medical signal-pattern-
recognition framework to identify (or distinguish) abnormal
spatiotemporal patterns from multichannel EEG recordings. In
this computational framework, we develop two new classifica-
tion techniques for multidimensional time-series classification,
namely, support feature machine (SFM) and network-based
support vector machine (SVM) (NSVM). SFM is a pattern-
based classification technique employing the nearest neighbor
rule and time-series similarity measures, whereas its optimiza-
tion model selects the features with strong class separability
so that the classification accuracy is maximized. NSVM is a
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Fig. 1. Simplified scalp EEG recording placement and an example of 10-s
EEG recordings.

network-based version of SVM that incorporates statistical and
correlation measures of temporal synchronization among time-
series profiles. It can overcome the drawback of SVM regarding
time-series classification as SVM generally treats each time
stamp of a time-series epoch as an independent attribute al-
though data in the epoch are actually highly correlated. We eval-
uate and assess the performances of the proposed techniques on
an EEG data set acquired from ten patients, five epileptic and
five nonepileptic, during their routine EEG checks. The pro-
posed framework can be applied as a medical decision-support
system to improve the current medical diagnosis and prognosis
by assisting physicians in recognizing via data mining abnormal
patterns in complex medical data, particularly EEG recordings.
Such a system could be used in a quick screening process that
could determine whether a patient is epileptic or nonepileptic.

The organization of the succeeding sections of this paper
is as follows. In Section II, the research background and
previous work are discussed. In Section III, the SFM and
NSVM frameworks including time-series similarity measures
and optimization models are described. Section IV describes
the acquisition and cleansing procedures of the EEG data set
and the design of experiments. The computational results and
the performance characteristics of our classification techniques
are provided in Section V. The concluding remarks are given in
Section VI.

II. BACKGROUND

A. Epilepsy Diagnosis

There are many diseases that cause changes in brain behavior
and can be confused with epilepsy [3]; specifically, several
medical conditions can cause seizures or seizurelike episodes.
Therefore, the evaluation of patients with these symptoms is
aimed at determining the type (epileptic or nonepileptic) and
cause of the seizures. Out of the commonly used medical
tests such as blood tests, magnetic resonance imaging, positron
emission tomography, as well as studying the patient’s medical
history, EEG reading is the most important part of epilepsy
diagnosis because it directly detects electrical activity in the
brain. During an EEG test, electrodes are attached to specific
locations on the patient’s scalp (see Fig. 1 for simplified scalp
EEG recordings). A routine EEG test for epilepsy diagnosis
usually records about 20–30 min of brain waves; however, in
most cases, the results of routine EEG studies are often incon-

clusive, even in people known to have epilepsy, so prolonged
(24-h) EEG monitoring can be necessary. Epilepsy diagnosis
can be very complicated, particularly in immediate life-and-
death situations [e.g., in emergency rooms (ERs)] when the
decision needs to be made promptly. Also, in many cases of
coma, trauma, and surgical critical care, the medical diag-
nostic tools used to differentiate epileptic seizures from other
symptoms that have similar EEG morphological patterns are
very critical to the patients’ welfare. Inaccurate diagnosis and
treatment could have severe consequences, particularly in life-
threatening situations in ERs and intensive care units. An accu-
rate quick EEG analysis that can identify whether a patient has
epilepsy could drastically improve the accuracy of diagnosis
of epilepsy and thereby save patients’ lives. There is a desper-
ate need for a new technology providing quick and accurate
epilepsy screening, which would serve as an initial medical
diagnostic tool.

This study is of significant importance to improving current
brain diagnosis as it offers great potential for the development
of computerized techniques to differentiate between EEG pat-
terns from epileptic patients and those with different diseases
but morphologically similar EEG patterns. This study presents
a framework for a quick EEG analysis and screening process
that has an overarching potential to help save lives, improve the
accuracy of medical diagnosis, and reduce associated health-
care costs.

B. Pattern Recognition for Neurophysiological Signals

Over the past decade, there have been a number of research
studies in quantitative signal-processing techniques (both uni-
variate and multivariate) applied to neurophysiological data
such as EEG. For EEG analysis, linear univariate techniques
(e.g., power spectrum analysis and time–frequency analysis)
have often been used in conjunction with nonlinear methods
which incorporate high-order statistics, nonlinear dynamics
(e.g., chaos theory), and information-theoretical quantifica-
tion. New similarity measures called the Kullback–Leibler
discrimination information and the Chernoff information for
discrimination between multivariate series in the multivariate
non-Gaussian case were proposed in [5]. Subsequently, neural
network methods were developed for a nonlinear aspect of
analysis for multivariate time series, where a unified view of
nonlinear principal component analysis, nonlinear canonical
correlation analysis, and nonlinear singular spectrum analysis
techniques were presented [6]. A constructive induction method
for classifying time series was proposed in [7], where the scope
of attribute-value learning was expanded by using metafeatures
to the domains that contain instances with recurring substruc-
ture. A new technique that vectorizes components of a corre-
lation coefficient matrix of multidimensional time-series data
was proposed in [8]. Recently, there have been a few studies
regarding detecting changes in spatiotemporal data [9], [10].
One such study was conducted to detect and identify changes in
brain waves through event-related potential data [10]. However,
the problem of detecting spatiotemporal changes in known EEG
patterns is much easier than the problem of finding unseen
patterns in EEGs. Despite converging evidence and consistency
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in reported findings on the potential usefulness of these uni-
variate and multivariate techniques, their added value to the
diagnosis of brain disorders in clinical settings remains ques-
tionable. Complex brainwave patterns and their relationships to
brain disorders may be very specific for an individual patient,
yet vary from one patient to another. This suggests the need
for a new development of data-analysis and signal-pattern-
recognition techniques that allow the identification of more
complex relationships.

C. EEG Classification

Over the past few years, there has been a substantial body of
work in EEG classification. In the previous studies by our group
[11]–[14], it is suggested that EEG signals of epileptic pa-
tients during normal and preseizure states may be classifiable.
In those studies, we employed a feature-extraction technique
based on the chaos theory to characterize nonlinear dynamical
patterns in EEG signals. That technique was motivated by
mathematical models used to characterize multidimensional
complex systems and by the prospect of reduction of the
dimensionality of the EEG data [15]–[19]. In our first attempt
to classify EEG signals, we implemented the SVM approach
to classify normal and preseizure EEGs with some degree of
success [11]. However, the classification results were inferior
to a standard nearest neighbor classification. In a more recent
study, we proposed a time-series k-nearest neighbor approach
with advanced time-series similarity approaches (e.g., t-index
and dynamic time warping) and tested it on a larger EEG data
set [12]. The main drawback of traditional pattern-based (or
instance-based) classification techniques like k-nearest neigh-
bor is their sensitivity to noisy features because most techniques
do not incorporate the feature-selection process. Although the
feature-selection process can be carried out as a separate step
before classification, the process is usually not trained (super-
vised) to select the best combination of features (which requires
combinatorial optimization) as each feature is evaluated on
a one-to-one basis. Our group has recently proposed a new
optimization framework for supervised feature selection with
k-nearest neighbor classification [13], [14]. The framework
has been very effective in classifying normal and preseizure
EEGs. Based on our initial discovery of detectable EEG pattern
changes before a seizure, we believe that the concept of EEG
classification may be applicable to the epilepsy diagnosis prob-
lem. It is important to note that, in all of our previous studies,
the classification was done on individual patients, where we
used the training and testing data from the same patient. In
addition, we tested the hypothesis that there were significant
changes in EEG patterns prior to seizure onsets. In this paper,
however, we focus on the classification of EEG recordings
from epileptic and nonepileptic patients, which are much more
challenging than what we have studied in the past. We make
an attempt to test the hypothesis that epileptic and nonepileptic
EEG recordings during a nonseizure episode can be classified.
It is even more challenging when the training has to be done
across multiple patients. In addition, this study presents the
new NSVM as a multidimensional time-series classification
algorithm, which has not been introduced elsewhere.

D. Advances in Classification

Feature selection and classification are supervised learning,
which constructs a predictive function or model from train-
ing data. Generally, classification deals with a set of desired
input–output pairs by trying to find a global mapping from the
collected inputs to outputs to the highest possible extent and
then making predictions of future outputs. A decision tree is an
algorithm that creates a mapping model to data instances based
on some feature values. In a decision tree, nodes represent
classification features and branches represent conjunctions of
features that lead to those classifications. Starting at the root
node, the data instances are sorted based on their feature values.
The most well-know algorithm to generate decision trees is an
algorithm called C4.5 [20]. C4.5 builds decision trees from a
set of training data by using the concept of Shannon entropy
[21], which is a measure of the uncertainty associated with a
random variable. Ruggieri [22] provided an improved version
of C4.5, called EC4.5, which was claimed to be able to compute
the same decision trees as C4.5 with a performance gain of up to
five times. Yildiz and Dikmen [23] presented three parallel C4.5
algorithms which are applicable to large data sets. Baik and
Bala [24] presented a distributed version of decision trees. SVM
is a widely used technique for data classification and regression
[25]. The key concept of SVM is its projection of input data
instances into a higher dimensional space and division of the
space with a continuous separation hyperplane while iteratively
minimizing the distance of misclassified data instances from the
hyperplane. In other words, SVM generally tries to construct
a hyperplane that minimizes the upper bound on the out-of-
sample error. There have been many variations of SVM models.
In practice, most data sets are not perfectly separable. For this
reason, one should try to approximate the goal of maximizing
margin by minimizing an average sum of violations. This leads
to the development of robust linear programming formulation
[26]. A number of linear programming formulations for SVMs
have also been used to explore the properties of the structure of
the optimization problem and solve large-scale problems [27],
[28]. The SVM technique proposed in [28] was also demon-
strated to be applicable to the generation of complex space
partitions similar to those obtained by C4.5 [20] and CART
[29]. SVMs have been applied to many real-life problems
including handwritten digit recognition [30], object recognition
[31], speaker identification [32], face detection in images [33],
and text categorization [34]. SVM can also be extended to
multiclass problems [30], [35], [36]. Kernel transformation,
also known as kernel trick, is one of the most successful ap-
proaches applied to SVM. It uses the idea that once a data set is
transformed into a high-dimensional space, each data instance
can be classified by a separating plane if the new dimension is
sufficiently high enough [37]. A good separation is achieved by
a hyperplane with the largest distance from the neighboring data
points of both classes. This concept is very intuitive because,
in general, the larger the margin, the better the generalization
error of the classifier. The most simple kernel function is the
linear kernel k(x, y) = x · y. The decision function takes the
formula f(x) = wx+ b. In time-series prediction, the linear
kernel can be interpreted as a statistical autoregressive model of
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the order k(AR[k]). Another commonly used kernel function is
the radial basis function (RBF) kernel kγ(x, y) = exp(−γ‖x−
y‖2). The similarity of two samples in the RBF kernel can
be interpreted as their Euclidian distance. Recently, there have
been a number of research studies proposing the use of kernel
functions for single time-series transformation such as speech
recognition [38]–[42]. To the best of our knowledge, a formal
time-series classification study based on data mining was intro-
duced in the late 1990s [43], [44]. A new type of self-organizing
neural network was developed to classify control-chart time-
series data [43]. A new representation of time series for faster
classification was proposed [44]. Subsequently, the feature-
extraction technique was introduced to classify time-series data
[45]. More sophisticated classification techniques such as clas-
sification trees and SVM were employed with some degree of
success [46], [47]. In later studies [48], [49], the research focus
was shifted to time-series motif discovery where new algo-
rithms were developed to find an efficient and effective discrete
approximation of the time series. The dynamic-time-warping
measure has been applied and improved to efficiently classify
time series [50]. In a recent study [51], a disk-aware algorithm
was employed to find exact time-series motifs in large-scale
databases. Most recently, an efficient online classification tool
for time-series data based on support vector regression (SVR)
was developed [52]. Whenever a sample is added to or removed
from the training set, this technique is capable of updating
a trained SVR model efficiently without retraining the entire
training data.

Although there has been an expanded body of work in
time-series classification, most studies only deal with single
time-series data (univariate) and very few methods are ap-
plicable to multidimensional time series (multivariate) like
EEG recordings. Similarly, most studies on EEG analysis in
the literature focus on univariate analysis of the recordings.
The NSVM and SFM approaches proposed in this study are
designed to work with multidimensional time-series data. The
NSVM approach captures the interactions between different
pairs of time series while the SFM approach uses baseline
patterns and fuse the similarities of individual series into a
single framework. In addition, the SFM approach can be viewed
as an ensemble classification version of the nearest neighbor
approach for time series. The feature-extraction step of the
NSVM approach can be viewed as a new way to generate
features that are more interpretable to the end users (e.g.,
physicians).

III. CLASSIFICATION TECHNIQUES FOR

MULTICHANNEL EEG SIGNALS

We propose two new classification techniques for multidi-
mensional time-series data that will be used to identify epileptic
and nonepileptic patients from EEG data samples. Each EEG
sample is represented by a multidimensional time series, shown
in Fig. 1, where each trace represents a time series of an
electrode. The key idea of both techniques is to integrate both
spatial and temporal features of EEG data into the classification
models.

A. SFM

The key idea of SFM is the integration of accuracy optimiza-
tion into feature selection and the nearest neighbor classifica-
tion in the training phase. The procedure of SFM is described
by the following steps.

1) Step 1—Apply the Nearest Neighbor Rule: The nearest
neighbor rule is a very intuitive classification method, which
assigns an unlabeled sample to the class whose baseline sam-
ples are the closest. During the training phase, we have two
groups of baseline (labeled) EEG data samples, epileptic and
nonepileptic. Since each EEG data sample is in the form of mul-
tidimensional time-series data, we employ the nearest neighbor
rule based on time-series similarity measures to quantify the
closeness between data samples. Generally, time-series similar-
ity measures deal with a single time-series profile. Here, we
apply an ensemble classification concept to modify the nearest
neighbor approach for multidimensional time series [12]. Given
multiple decisions from multiple features (electrodes), we em-
ploy two commonly used schemes, distance averaging and
majority voting, to combine these decisions in classifying an
unlabeled sample. In the distance-averaging scheme, for every
feature, each class gets a score equal to the statistical distance
from each of its training samples to all other baseline samples
of the same class. The overall score of each class is equal
to the summation of the scores for all features (electrodes).
The sample is then classified to the class with the lowest
overall score. In the majority-voting scheme, for every feature,
a class (category) gets one vote if the nearest neighbor rule
classifies the training sample to that class. The sample is, in
turn, classified to the class with the maximum number of votes,
i.e., majority of features/electrodes.

Here, we employ two commonly used time-series similar-
ity measures, Euclidean distance and T-Statistical distance
(T-Statistics). Euclidean distance is the most commonly used
similarity measure. It measures the degree of similarity in
terms of the amplitude of the data. The Euclidean distance
between EEG samples u and v of length t at electrode j is
defined as EDj

uv = (
∑t

i=1(u
j
i − vji )

2)/t. T-statistical distance
is a measure of statistical distance between two time series
derived from the t-test, which is frequently used to determine if
two time series differ from each other in a significant way under
the assumptions that the paired differences are independent and
identically normally distributed. The t-index can be seen as
a ratio of the difference between the two means or averages
and a measure of the variability or dispersion of the scores.
The t-index between EEG samples u and v of length t at
electrode j is defined as T j

uv = (
∑t

i=1 |u
j
i − vji |/

√
tσ|uj−vj |),

where σ|uj−vj | is the sample standard deviation of the absolute
difference between EEG time series u and v estimated over a
window with length t.

In the training phase, since we already know the true class
(label) for each of the training samples, we use the nearest
neighbor rule to evaluate the classification accuracy of every
electrode on every training sample. The SFM optimization
models are then formulated to incorporate all the classification
decisions made by all the electrodes and select the best subset
of electrodes that maximizes the classification accuracy. For
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the distance-averaging scheme, the input information of SFM
includes n×m intraclass-distance matrix (D) and n×m
interclass-distance matrix (D̄). The entry of intraclass matrix
dij is the average statistical distance between training sample i
and all other training samples from the same class at electrode j.
The entry of interclass matrix d̄ij is the average statistical dis-
tance between training sample i and all other training samples
from different classes at electrode j. For the majority-voting
scheme, the SFM input is an accuracy n×m matrix (A), where
n is the number of training samples and m is the number of
features. The entry aij = 1 indicates that the nearest neighbor
rule correctly classifies training sample i at feature j and is
zero otherwise. The time complexity of the matrix-generation
procedure for both schemes is O(n2mτ), where n2 is required
for a pairwise comparison of all data, m is required for all
electrodes, and τ is required for the calculation of time-series
similarity measures. Here, τ = O(t) for Euclidean distance and
τ = O(t2) for T-Statistical distance.

2) Step 2—Optimization Models of SFM: The SFM opti-
mization model is formulated to select a group of features
(electrodes) that maximizes classification accuracy based on
the nearest neighbor rule. To formally formulate the SFM
optimization problem into a mathematical programming model,
we define the following sets and decision variables. Denote
i ∈ I as a set of training samples where |I| = n and j ∈ J
as a set of features where |J | = m. We let xj ∈ {0, 1} be a
decision variable indicating if feature j is selected by SFM
and yi ∈ {0, 1} be a decision variable indicating if training
sample i is correctly classified.

Averaging SFM (A-SFM): The input of A-SFM are the
intra- and interclass distance matrices D and D̄ generated in
Step 1. The objective function in (1) is to maximize the total
number of correctly classified samples. There are two sets of
constraints in (2) and (3) to ensure that the training samples
are classified based on the distance-averaging nearest neighbor
rule. There is a set of logical constraints in (4) to ensure that
at least one feature (electrode) is selected in the distance-
averaging nearest neighbor rule. The mixed-integer program
(MIP) of A-SFM is given by

max

n∑

i=1

yi (1)

s.t.
m∑

j=1

d̄ijxj −
m∑

j=1

dijxj ≤ M1iyi, ∀i ∈ I (2)

m∑

j=1

dijxj −
m∑

j=1

d̄ijxj ≤ M2i(1− yi), ∀i ∈ I (3)

m∑

j=1

xj ≥ 1 (4)

x ∈ {0, 1}m y ∈ {0, 1}n (5)

where dij is the average statistical distance between training
sample i and all other training samples from the same class at
electrode j (intraclass distance), d̄ij is the average statistical
distance between training sample i and all other training sam-

ples from different classes at electrode j (interclass distance),
M1i =

∑m
j=1 dij , and M2i =

∑m
j=1 dij .

Voting SFM (V-SFM): The input of V-SFM is the accuracy
matrix A generated in Step 1. The objective function of V-SFM
in (6) is the same as that of A-SFM. There are two sets of
constraints in (7) and (8) to ensure that the training samples are
classified based on the voting scheme. There is a set of logical
constraints in (9) to ensure that at least one feature is used in the
voting nearest neighbor rule. The MIP of V-SFM is given by

max

n∑

i=1

yi (6)

s.t.
m∑

j=1

aijxj −
m∑

j=1

xj

2
≤ Myi, ∀i ∈ I (7)

m∑

j=1

xj

2
−

m∑

j=1

aijxj + ε ≤ M(1− yi) ∀i ∈ I (8)

m∑

j=1

xj ≥ 1 (9)

x ∈ {0, 1}m y ∈ {0, 1}n (10)

where aij = 1 if the nearest neighbor rule correctly classified
training sample i at feature j and is zero otherwise, n is the total
number of training samples, m is the total number of features,
M = m/2, and 0 < ε < 1/2 is used to break ties during voting.

In the training phase (Steps 1 and 2), the SFM optimization
models of A-SFM and V-SFM are individually solved using an
off-the-shelf CPLEX optimization solver. It is very important
to note that these optimization models are very compact. The
space complexity grows linearly with the number of training
samples and the number of features (electrodes), specifically
O(n+m). The majority of computational efforts will be in
Step 1. This depends solely on the number of features and
the length (number of data points) of EEG epochs. After the
SFM models are solved, a group of optimally selected features
(electrodes) that maximize the classification accuracy will be
obtained and used in Step 3.

3) Step 3—Using SFM to Classify Unlabeled EEG Sample:
In the testing phase, the classification will be done based on
the features (electrodes) selected in the training phase. A-SFM
classifies an unlabeled EEG sample to the class whose baseline
training EEG data are the nearest (closest) based on the average
distance of selected electrodes. Similarly, V-SFM classifies an
unlabeled EEG sample to the class with the highest votes
counted only from selected electrodes.

B. NSVM

NSVM employs a new network modeling technique to incor-
porate SVM with spatiotemporal EEG analysis by representing
an EEG sample as a “Brain Graph” or “Brain Network.”
Essentially, NSVM maps each multichannel EEG sample into
a network representation and applies the SVM classification
to the mapped data. Fig. 2 shows a hypothetical schematic
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Fig. 2. Example of brain network models of all pairwise edges of scalp EEG
data, where the similarity of EEG time series between two electrodes T4 and
T5 is measured by Euclidean distance.

view of the network-based modeling procedure of NSVM. The
procedure of NSVM is described in the following steps.

1) Step 1—Network Modeling (Feature Extraction): In the
first step, we extract important features of EEG recordings
by using the new brain networking model, which can be
formulated in graph-theoretic terms as follows. Let G be an
undirected graph with vertices V1, . . . , Vm, where Vi represents
electrode i. There is an edge (link) with the weight wij for
every pair of nodes Vi and Vj corresponding to the similarity of
the EEG signals between the two electrodes. In this paper, we
employ Euclidean distance as a measure of similarity/distance
between two electrodes. The similarity or distance between
each electrode pair is hypothesized to be the degree of changes
in the neuronal synapses in the local circuitry under the record-
ing electrodes.

With this networking model, the attributes of SVM inputs are
the pairwise distances between time-series profiles of electrode
pairs rather than the time stamps of time-series profiles. Not
only can NSVM capture the global interaction among different
electrode sites, but it can also reduce the dimensionality of
the EEG data. For example, given m electrodes, each with t
time stamps, NSVM decreases the number of attributes (SVM
features) by 2(m− 1)/t times. To be more precise, let n be the
total number of EEG data samples. The dimensionality can be
reduced from A ∈ �n×m×t to Ā ∈ �n×(m(m−1)/2). In Fig. 2,
all pairwise edges of a brain graph are illustrated, where each
edge weight is calculated by measuring the Euclidean distance
between the time-series profiles of two electrodes. In fact, the
network modeling concept can be viewed as a kernel function
that maps the EEG data from the input space X into another
feature space X by a function Φ : X → X . Such a kernel
function k calculates the inner product in the feature space
k(u, v) = Φ(u) · Φ(v) of EEG time series u and v. The kernel
function is a similarity (distance) measure in the input space
[53]. The similarity between the samples x and y can be shown
as the kernel function k(x, y) as d2(u, v) = (Φ(u)− Φ(v))2 =
k(u, u)− 2k(u, v) + k(v, v).

2) Step 2—Modeling SVM: After a network representation
of EEG samples is obtained, we use the edge weights as
input features of SVM. The procedure of SVM is formally
defined as follows. Let all the data samples be represented as

n-dimensional vectors (or points in the n-dimensional space).
SVM finds a hyperplane that separates all the vectors (points)
in set A (epileptic) from the vectors in set B (nonepileptic)
in an n-dimensional space. If a hyperplane is defined by the
standard expression xTω = γ, where ω = (ω1, . . . , ωn)

T is an
n-dimensional vector of real numbers and γ is a scalar, then this
plane will separate all the elements A from B. Thus, discrim-
ination rules can be formulated as an optimization problem to
determine vectors ω and γ such that the separating hyperplane
defines two open half spaces, which contain most of the data
points in A and B, respectively. However, in practice, it is
usually not possible to perfectly separate two sets of elements
by a plane. For this reason, it is intuitive to minimize the
average measure of misclassifications. The violations of these
constraints are modeled by introducing nonnegative variables x
and y. The mathematical model for SVM that minimizes the
total average measure of misclassification errors is given by

min
ω,γ,x,y

1

m

m∑

i=1

xi +
1

k

k∑

j=1

yj (11)

s.t. Aω + x ≥ eγ + e (12)

Bω − y ≤ eγ − e (13)

x ≥ 0 y ≥ 0 ω, γ ∈ R
n. (14)

As one can see, this is a linear programming problem. The
decision variables here are the geometrical parameters of the
separating plane ω and γ, as well as the variables representing
misclassification error x and y.

IV. MATERIALS AND METHODS

A. Data Acquisition and Sampling

In this paper, two EEG data sets were acquired. The first
EEG data set was acquired from short-term EEG recordings
of ten patients, five epileptic and five nonepileptic. The second
EEG data set was acquired from ten patients; however, only five
of those patients were known to be epileptic while the other
five patients were not known to be epileptic or nonepileptic. In
practice, it was hard to find a clean data set in which patients
were definitely labeled as nonepileptic. Thus, in this study, we
used the second data set as a validation set and considered only
the recordings from the five epileptic patients. The recordings
from ambiguous patients were discarded before the ground
truth of the patient labels were not known.

Tables I and II present the recording characteristics of the
first and second EEG data sets, respectively. All EEG record-
ings were obtained from two separate hospitals in New Jersey
during the patients’ scheduled EEG checks as part of a routine
epilepsy and brain-disorder diagnosis. Each recording used
a total of 19–22 scalp electrodes, placed according to the
extended International 10–20 System. In the first data set, the
18-channel bipolar montage was used to acquire signals for
our analysis. In the second data set, different bipolar montages
were used to acquire signals from different patients; ultimately,
there were only 14 consistent bipolar electrodes, which were
used in this study. The EEG recordings were 13–45 min in
duration, digitized at 250-Hz sampling rate (for the first data
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TABLE I
CHARACTERISTICS OF EEG DATA SET I

TABLE II
CHARACTERISTICS OF EEG DATA SET II

set) and 200-Hz sampling rate (for the second data set). All
recordings in the first data set were viewed by two indepen-
dent epileptologist electroencephalographers to determine if
the patient had epilepsy. The recordings in the second data
set were viewed by an epileptologist electroencephalographer
to identify obvious epileptic patients and ambiguous patients.
The first data set was used to assess the performance of the
proposed classification techniques that predict whether a patient
is epileptic or nonepileptic. It is very important to note that only
the recordings from epileptic patients in the second data set
were used as hold-out samples only to validate the classification
models trained by using the first data set.

Based on the noncentral F-distribution, with Type I error
α = 0.05, a minimum of eight subjects in each group were
required to detect a difference of two standard deviations with
a test power of at least 90% (i.e., Type II error < 0.1). Since
we had only five subjects in each group, in order to justify the
prediction power, we used a Monte Carlo sampling method to
randomly and uniformly sample five l-minute epochs of EEG
recordings from each subject. In this paper, we use l = 1, 2, 3,
and 4 min to test the prediction power of different sizes of EEG
epochs. Each sampled epoch can be represented by an n×m
matrix, where n = 18 electrodes and m = l × 60× 250 data
points for the first data set and n = 14 electrodes and m =
l × 60× 200 data points for the second data set. There were
two main reasons why we varied the window size between 1
and 4 min. First, in clinical settings, obtaining a second opinion
in a timely fashion can be very useful for clinicians. Second,
the epoch has to be large enough to capture significant patterns
(e.g., sharp waves, transients, and spindles) yet small enough to
run our classification algorithms in a timely fashion.

B. Assessment and Validation

This phase involved the design of experiments to assess and
validate the efficacy and robustness of the proposed classifica-
tion techniques.

Training and Testing: In order to reduce the bias of training
and testing data, in previous work, cross-validation techniques
have been extensively used as a method to estimate the gen-
eralization error based on “resampling,” by assessing how well
classification techniques have been learned in the training phase
and how well they are going to perform on future as-yet-unseen
data in the testing phase. The n-fold cross-validation is com-
monly used to divide the data into n subsets of (approximately)
equal size. Then, the classification techniques will be trained
and tested n times, in which one of the subsets from training
is left out each time and tested on the omitted subset [54].
However, n-fold cross-validation is not appropriate in this study
because the various folds of the training and the fold of the
testing may include data samples that were drawn from the
same patients. This situation would increase the likelihood of
bias and, thereby, might artificially increase the classification
accuracy. Thus, to avoid such a situation, we employed a
leave-one-patient-out cross-validation methodology in order to
avoid the potential bias of having EEG samples from the same
patients in both the training and testing data. Essentially, the
proposed cross-validation methodology ensures that all five
EEG samples drawn from the same patient are included in
the same fold. In turn, five EEG samples corresponding to an
individual patient are left out of the training data, consisting of
the data from the remaining nine patients, and used as testing
data. This is repeated for all ten patients, so that, ultimately,
there are ten leave-one-patient-out cross-validation runs for
each data set. This process ensures that each patient is left out
exactly once, removing the potential for bias.

Performance Evaluation: We evaluated the performance of
classification techniques in terms of sensitivity (1 - Type II
error), specificity (1 - Type I error), and accuracy. Sensitiv-
ity and specificity are widely used in the medical domain
as classification performance measures. Sensitivity measures
the fraction of positive cases that are classified as positive.
Specificity measures the fraction of negative cases classified
as negative. Accuracy measures the overall fraction of samples
that are correctly classified. In this paper, in the first data set, we
labeled the EEG samples from epileptic patients as positive and
those from nonepileptic patients as negative. In the second data
set, we labeled the samples from epileptic patients as positive
and those from ambiguous patients as negative. For the testing
samples, we considered four subsets of classification results:
1) true positives (TP) denoting correct classifications of positive
cases; 2) true negatives (TN) denoting correct classifications
of negative cases; 3) false positives (FP) denoting incorrect
classifications of negative cases as positive; and 4) false nega-
tives (FN) denoting incorrect classifications of positive cases as
negative. We measured the performance of classification tech-
niques as follows: Sensitivity = (TP/(TP + FN)) = 1−
Type II error; Specificity = (TN/(FP + TN)) = 1−
Type I error; and Accuracy = (TP + TN/(TP + TN +
FP + FN)).

Hold-out Samples: Only recordings from epileptic patients
in the second data set were used as a hold-out data set. We
trained all classification techniques using recordings from all
ten patients in the first data set. Once they were trained, we
tested their accuracies (sensitivities) in detecting recordings
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from epileptic patients. Note that the sensitivity is extremely
important because, in medical diagnosis, a false negative is
much more costly than a false positive. In other words, it is
better to overdiagnose the patients than to not pick up if the
patient indeed has the disease (i.e., epilepsy in this case). It is
important to note that the sampling rates of EEG recordings in
the two data sets were different. We employed a spline function
to downsample the EEG recordings in both data sets to 100
and 200 Hz.

C. Computational Implementation

All optimization problems associated with SFM were mod-
eled in MATLAB through a callable GAMS library and solved
using ILOG CPLEX version 10.0 with the default setting. All
of the SFM experiments were implemented and performed on
an Intel Xeon 3.0-GHz workstation with 3 GB of memory
running Windows XP. All calculations and algorithms were
implemented and run on MATLAB version R2007a. The com-
putational time required to solve the SFM model was, on
average, less than 5 min, and the time required to process an
unknown EEG epoch to classify it to a patient group was,
on average, less than 3 min. All the calculations associated
with SVM were done using the WEKA Workbench [55]. In
order to employ the WEKA algorithms, we converted the
EEG data into the Attribute Relation File Format, which is
the WEKA default format, using a Java program. Due to the
very large dimensionality of the EEG data, the WEKA GUI
could not be employed on our local workstation. The WEKA
algorithms were executed on a supercomputer named Cobalt
at the National Center for Supercomputing Applications in
Champaign–Urbana, IL. Cobalt contains 96 GB of globally
accessible memory and therefore provided substantial resources
to conduct the experiments in this study.

V. COMPUTATIONAL RESULTS

We employed the leave-one-patient-out cross-validation to
assess the classification performance of A-SFM, V-SFM, and
NSVM on both data sets I and II independently. Specifically,
for each data set, ten classification iterations were performed,
in each of which, all five EEG samples drawn from one patient
were used as the testing set while the rest of the EEG samples
were used as the training set. In each iteration, sensitivities
and specificities were measured for different EEG epoch sizes.
The sensitivities and specificities were then averaged across
ten iterations. In order to show the superiority of the proposed
techniques, we implemented various different classification
algorithms in order to discover which model most accurately
predicted an individual patient’s diagnosis. In the initial steps
of the experiment, a few different algorithms were selected
in order to explore the space of algorithm performance and
eventually narrow the selection down to the most effective
algorithms. The algorithms selected for initial experimentation
were J48 (a Decision-Tree Learner), SVM, OneR (Holte’s
OneR), Naive Bayes classifier, Instance-Based Learning, the
Decision Stump, and the Hoeffding tree algorithm. We note
that the Hoeffding tree algorithm is a time-series classification,

which appears to be an appropriate choice of EEG classifica-
tion. Because the Hoeffding tree algorithm works by assuming
a stream of data consisting of many records, the leave-one-
patient-out cross-validation is not applicable in this case. In
our experiments, we performed bootstrapping to oversample
the EEG epochs to obtain a stream of 1 million instances. This
resampled stream was used as both the training and testing
data sets while a different seed was used for random selection
from the stream during testing to ensure that the Hoeffding tree
algorithm used a different set of data during training and testing.
Given the various results, the most effective algorithms selected
for further experimentation in this study were J48 and linear
and quadratic SVMs. J48 is a decision-tree algorithm in which
nonterminal nodes indicate tests on one or more attributes using
an attribute selected as the best differentiator and terminal
nodes indicate classifications. Note that the implementation of
standard linear and quadratic SVMs was very similar to the one
of NSVMs. The main difference is the input data, as for the
nonnetworking implementation, we simply concatenated the
time-series data from all electrodes for each sample as a large
vector.

A. Classification Results of Data Set I

The classification results of A-SFM, V-SFM, SVM, NSVM,
and Decision Tree (J48) on the testing data of data set I are
summarized in Table III. We note that, in every experiment, all
of the classification techniques yielded 100% training accuracy.
From the table, the various consistencies of classification results
across different epoch sizes are observed. For J48 (decision-tree
algorithm), the classification performance appears to decrease
as the epoch size increases. This might be due to the number
of input features that grows with the epoch size, which might
lead to data overfitting. Both linear and quadratic SVMs con-
sistently achieved very high sensitivity and specificity. NSVM
also consistently provided very high competitive sensitivity and
specificity, except in the 4-min epoch case. It is also important
to note that the size of the input vectors for NSVM is much
smaller than the size of the vectors used as input for standard
SVM. Specifically, as the features of NSVM are the pairwise
distances between electrode pairs, each input data sample of
NSVM contains only 18× 17 = 306 features, whereas each
input data sample of SVM contains 18× 45 000 = 810 000
features. Most importantly, it only required a fraction of time
to solve (compared with standard SVM) and did not require
the use of large computing clusters. As for SFM approaches,
A-SFM consistently outperformed V-SFM. We speculated that
V-SFM might not perform well when there were not many
features in the model. Thus, in order to get consensus voting,
a larger number of features may provide more accurate reli-
able classification. These results indicate that the optimization
component in SFMs is very effective at capturing the dynamic
interactions of the EEG’s spatial components, i.e., electrode
interactions of epileptic and nonepileptic patients. These results
also validate the need for feature selection through spatial com-
ponent optimization in multidimensional time-series classifica-
tion. All in all, the proposed SFM and NSVM approaches were
capable of separating and identifying EEG samples collected
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TABLE III
PERFORMANCE CHARACTERISTICS (TESTING RESULTS) OF DECISION TREE (J48), SVM, AND SFM WITH DIFFERENT

PARAMETER SETTINGS TESTED ON EEG DATA SET I (EPILEPTIC VERSUS NONEPILEPTIC)

TABLE IV
ACCURACIES OF J48, SVM, AND SFM IN CLASSIFYING INDIVIDUAL PATIENTS (TESTING RESULTS) USING 3-min EEG EPOCHS OF THE FIRST DATA SET

from epileptic and nonepileptic patients. These approaches
required much less computational resources than the decision-
tree and standard SVM approaches while providing very com-
petitive results.

B. Classification Results of Individual Patients

Table IV summarizes the accuracy of EEG classification
using J48, SVM, NSVM, and SFM based on individual patients
from the experiments in Table III. Note that, for individual
patients, we classify five data samples; therefore, the accu-
racies shown in the table are in a multiple of 20%. These
results may be useful when estimating the performance of
a possible collective classification when making a diagnosis
decision. For example, one can apply a majority rule (three
out of five samples) to make a diagnosis decision: epileptic or
nonepileptic. The results in Table IV may be, in turn, considered
as classifier’s reliability. In regard to classifier’s reliability, we
observed that, in most cases, all approaches provide very good
classification accuracies for all patients in the first data set.
The classification results of J48 appear to be the worst among
the different classification techniques in terms of accuracy and
reliability. The classification results obtained by standard SVM,
NSVM, and A-SFM approaches were consistently accurate
with only a few exceptions where 100% accuracy was not
obtained.

C. Classification Results of Hold-Out Data Set II

In order to validate that our EEG classification framework
can be generalized to data from different acquisition machines,
we trained the classifiers using the entire data set I and tested
the trained classifiers using data set II as a hold-out data set.

Note that due to the difference in sampling rates, we employed
a spline function to downsample the EEG recordings from both
data sets to 100 and 200 Hz. We also note that although the
standard 10–20 montage system is commonly used, the output
EEG signals may be extracted from different bipolar settings.
In our case, we were able to match the EEG recordings from
12 electrodes in common between data sets I and II. After we
obtained both training and testing data sets of the same size
from the common electrodes, we implemented all classification
techniques as stated in an earlier experiment. The training
accuracies of all classification techniques were near perfect,
either 100% or 96%, in most test instances. The testing results
of using the hold-out data set II are given in Table V. The
table reports the classification accuracies of correctly predicting
the EEG epochs from epileptic patients. The results when
using 100- and 200-Hz spline functions are very comparable
while the size of EEG epochs slightly affected the classification
accuracies. Nonetheless, the results from 3- and 4-min epochs
are quite stable, which, in turn, implies that they might be
an appropriate epoch size for this study. From the table, it is
observed that NSVM (quadratic) yielded 100% classification
accuracy for all cases, regardless of the spline sampling rate
and epoch size. In addition, the classification results of NSVM
outperformed those of all other classification techniques tested
here. In particular, SVM techniques, both quadratic and linear
kernels, failed to classify all EEG samples from the epileptic
patients in data set II. The results suggest that NSVM may
be an appropriate approach for this problem as it is fast,
accurate, scalable, and can be parallelized. More importantly,
these results may lead to a greater understanding of epileptoge-
nesis. The features that are useful in classifying epileptic and
nonepileptic patients may be the interactions among different
brain areas.
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TABLE V
ACCURACIES OF DECISION TREE (J48), SVM, AND SFM WITH DIFFERENT PARAMETER

SETTINGS TESTED ON HOLD-OUT DATA SET II (ONLY EPILEPTIC PATIENTS)

VI. CONCLUSION AND DISCUSSIONS

A quick and accurate epilepsy-screening tool will enor-
mously reduce associated healthcare costs and improve the
medical diagnosis, treatment, and prognosis of patients. In this
paper, we studied the diagnosis challenges of epilepsy, a brain
disease characterized by recurrent seizures. In epilepsy diag-
nosis, discovering why seizures occur can be difficult, because
there are so many possible causes. Seizures often happen infre-
quently and unpredictably, making it difficult for neurologists
to assess them with neurological testing. In addition, some
people have more than one condition that can cause seizures or
seizurelike episodes. In the case of a coma, the differentiation of
epileptic seizures from seizures with other causes with similar
EEG morphological patterns is very challenging, yet would
be very helpful to physicians. Unfortunately, in up to 70%
of recorded cases, the cause of a person’s seizures remains
unknown [3]. Thus, there is a definite need for a new decision-
aided tool to help physicians recognize abnormal hidden pat-
terns from brain activity that signify epilepsy. Such a tool could
improve both the diagnosis and treatment of patients, since
various types of seizures respond best to specific treatments.

To be able to reliably recognize if a patient has epilepsy,
we developed two new time-series classification techniques,
namely, SFM and NSVM, to classify EEG data from epileptic
and nonepileptic patients. The pattern-based SFM approach
is an optimization model that maximizes classification accu-
racy by selecting electrodes (features) that correctly classify
EEG samples in the training phase. Conceptually, the selected
electrodes in the training phase have strong class separability
through time-series similarity measures and have proven useful
in the testing phase. There are two variations of SFM modeling:
averaging and voting. The objective of A-SFM is to maximize
the number of training data samples whose intraclass distances
are smaller than their interclass distances. The classification
rule is based on the concept of the nearest neighbor rule.
V-SFM can be viewed as an ensemble classification method,
in which each classification rule is derived from the nearest
neighbor classification for each electrode. The main concern of
SFM is its scalability. Although SFM’s space complexity grows
linearly with the number of training samples and the number
of features, it is still ideal to collect and use as many baseline
samples as possible as the accuracy of SFM relies mainly on the
baseline samples. If EEG epochs were carefully sampled such
that they included epileptic patterns such as sharp waves and

spikes, SFM should perform much better than other approaches
as it uses the morphology of EEG recordings as features. In
addition, the size of sampled EEG epochs also plays a very
important role in computational time requirement. Because
the SFM modeling requires a preprocessing step that uses
the nearest neighbor rule to measure the intra- and interclass
distances for each feature, the size of EEG epochs were limited
to less than 5 min. Nevertheless, the proposed SFM and NSVM
approaches still scale much better than the decision-tree and
standard SVM approaches. In our empirical study, we were not
able to run those approaches in our computing server but rather
had to use a supercomputer based at the University of Illinois
at Urbana–Champaign. Among all the approaches investigated
here, NSVM, which employs a new network-based model and
integrates it with SVM modeling, is the most scalable approach.
This is because it transforms a multidimensional EEG time
series into a single matrix as input features of SVM.

The classification results in this study are quite promising.
In a carefully selected data set (data set I), whose ground truth
of the data label (epileptic versus nonepileptic) is known, all
the classification techniques except decision tree successfully
classified all ten patients. However, in the hold-out data set
(data set II), only NSVM and V-SFM were able to accurately
predict the group of EEG samples while other methods failed
to make accurate predictions. In other words, decision tree,
A-SFM, and SVM predicted all epileptic patients as nonepilep-
tic patients—obtaining 0% classification accuracy. This is ex-
tremely vital in real-life medical diagnosis because the cost of
false negative is far higher than the cost of false negative. The
NSVM approach appears to be very appropriate as a general-
ized method to be applied in real life because it is independent
of the sampling rate and the signal acquisition settings of the
EEG machine. NSVM’s features are simply the connectivity
relationship among different brain regions. Thus, the EEG time
series from individual electrodes are compared among each
other from the same acquired recordings. On the other hand,
other approaches like decision tree and traditional SVM are
very sensitive to the sampling rate and the amplification of
the EEG signals. Although simple scaling and/or normalizing
can be applied, such preprocessing step might, in turn, remove
meaningful patterns in the recordings. In addition, this obser-
vation is also confirmed by the contrasting results between
V-SFM and A-SFM. V-SFM is less sensitive to noises and
biases from individual electrodes due to the nature of voting,
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i.e., every selected electrode equally contributes a vote of one.
On the other hand, A-SFM may be biased by some selected
electrodes with a higher scale of similarity distance. Although
the results in this experiment appear to be conclusive, it would
be ideal if we were able to obtain a hold-out data set that
contains nonepileptic patients. In practice, carefully selected
data sets with known labels (epileptic versus nonepileptic) are
extremely hard to obtain due to the fact that it takes several
months or years for physicians to ascertain whether a patient is
epileptic or nonepileptic.
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