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Abstract: Forecasting is a very important aspect of any business, and has enormous
social, economic, and environmental impacts. Various forecasting models have been
developed to help people make right decisions against future uncertainties. However,
all forecasting models have distinct advantages and limitations. Selecting appropri-
ate forecasting methods from numerous alternatives is crucial to success. This paper
briefly summarizes the state-of-the-art forecasting methods in terms of basic proce-
dure, underlying assumptions, applications and limits. And then the most popular
model selection criteria and guidelines are presented.
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1 Introduction

Strategic planning for the future is extremely important in any business to make
definitive action plans. Due to its great importance, the knowledge of forecasting
has been growing very rapidly in modern times. Many forecasting models have been
developed to empower people in decision-making for various application areas. For
example, accurate demand forecasts are essential for manufacturers to determine the
optimal production rate by making a tradeoff between stock-outs and high inventory
levels. Successful climate forecasting models have been developed to provide early
warnings of adverse climatic conditions, such as hurricanes, storms, or frogs [24]. In
business activities, forecasting technologies have become indispensable tools in a wide
range of managerial decision-making processes, such as finance, banking, investments,
employment, mortgages and loans [2].

Forecasts can be made based on either empirical qualitative analysis or mathe-
matical quantitative analysis. Accordingly, forecasting models can be broadly clas-
sified as qualitative methods and quantitative methods. The flowchart of a typical
forecasting modeling process is shown in Figure 1. And the categorization of forecast-
ing models is shown in Figure 2. Fildes and Lusk [8] argued that no forecaster could be
the ‘best’ method from the various forecasting competitions. All forecasting methods
have distinct advantages and disadvantages. Therefore, selecting a right forecasting
method is of critical importance to all decision makers. This paper briefly reviews
the most influential forecasting models, and discusses the evaluating and comparing
criterion/algorithms for model selection.
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Figure 1: Flowchart of a typical forecasting modeling process.
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2 Qualitative Methods

Qualitative forecasting techniques rely primarily on human judgment based on ex-
pertise, experience, or intuition. They can be used in a wide range of circumstances
where historical data are not available, or circumstances that are changing so rapidly
that a mathematical forecasting model based on past data may become irrelevant
or questionable. A number of qualitative forecasting methods have been developed
to make good use of qualitative judgments from experts. Five of the more popular
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qualitative methods are briefly presented in the following.

2.1 Delphi Method

The Delphi method is a group technique which is based on structural surveys of a
panel of experts about their perceptions of future events [19]. All of the experts
answer a series of survey questions anonymously in several rounds. In the first round,
the panel members are asked to write down their intuitive forecasts on the survey
papers. Then, all the responses are summarized and fed back to each of the panel
members. In the next round, the panel members may modify their original forecasts
based on the responses of other panel members. This process usually generates a
narrowing of opinions, and can be stopped by a predefined criterion, such as maximum
number of rounds, degree of consensus, or stability of results. The final result of the
process can be the mean or median results of the final round. The Delphi method
provides more accurate forecasts than face-to-face group discussions, which are often
highly influenced by those experts who have the best interaction and persuasion
skills, or powerful background. With the advances in collaborative tools, such as
email, synchronous video conference, web conference, Delphi Method is very easy to
implement in modern times. However, one drawback of the Delphi method is that it
is usually very time consuming.

2.2 Jury of Expert Opinion

The jury of expert opinion is a method of developing forecasts in which the executives
of a company are polled for their best estimate of the future trends, such as likely
sales and demands [21]. It is also known as the ‘jury of executive opinion’ method.
This method is one of the simplest and widely used forecasting methods in business.
A typical outline of the ‘jury of expert opinion’ method is as follows. Firstly, each
executive gets familiar with the background information as much as possible. Then in
the meeting, all the executives write their estimates on survey papers. The final step
is to combine all the options to produce an average and acceptable result among all
the executives. The ‘jury of expert opinion’ method can be considered as an informal
variant of the Delphi method. The only difference between them is that the ‘jury of
expert opinion’ method does not have a mechanism to prevent interactions amongst
the meeting participants.

2.3 Scenario Analysis

Scenario analysis is a systematic thinking process to discover how various different
factors may function together to create future [7]. Different scenarios can be gener-
ated by combining different policy plans with all known facts and anticipated changes
about the future. Scenario analysis can often lead to plausible forecasts if the causal
relationship between factors and their consequences have been appropriately simu-
lated. Decision-makers can learn from the outcomes of different scenarios without
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risking failures and losses in real business. To approach scenario analysis, the major
steps are briefly as follows:

1. Determine the overall assumptions and factors on which the scenarios will be
built. All assumptions and factors should be carefully made so that they can be
conveniently under user’s control and inspection. A time scope of the scenarios
are also given.

2. Combine all the selected factors and assumptions together to construct a base-
line framework. Each setting of the factors corresponds to a scenario. Given
different levels of the influential factors, the outcome evolvement of each sce-
nario can be quite different.

3. Compare outcomes of the scenarios and pick up the most sensibly fitted scenar-
ios. This step usually requires a considerable amount of debate to determine
the selected scenarios.

2.4 Sales Force Composite

Other than management and administration members, sales force can also be an
important factor for qualitative forecasting analysis. The most popular method is
known as sales force composite, which is based on forecasts of salespeople [5]. The
assumption of the ‘sales force composite’ method is that salespeople are most quali-
fied to predict future market development in their own territories. Since salespeople
interact directly with costumers, they are presumably to have good estimate for mar-
ket changes and trends. One possible disadvantage of this method is that forecasting
results of salespeople tend to be optimistic. This is mainly because salespeople may
always choose an optimistic prediction if a low estimate could endanger their em-
ployment status. Moreover, since sales force in one department may not be aware of
impending changes in other areas, the opinions of salespeople in different territories
should be combined into consideration in decision-making.

2.5 Market Survey

To forecast future trends, another popular qualitative approach is to ask customers or
potential users how they foresee their future consumption of a product or service. It
is also called ‘user’s expectation’ method. Since there is no benefit conflict, individual
users are supposed to provide forecasts without undue optimism. Market survey has
gained its popularity and importance in forecasting the success of new products [16].
However, one problem is that user opinions may be heavily biased by the trend of
the moment. For example, most people have pessimistic opinions during periods of
recession and have optimistic opinions in periods of growth and prosperity. Another
disadvantage of the ‘Market Survey’ method is that it is often very expensive to obtain
a comprehensive survey of costumer expectations.
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3 Quantitative Methods

Quantitative methods make forecasts based on mathematical models rather than
subjective judgment. These methods are the mainstream of forecasting techniques as
a result of the great advances in mathematical modeling and computational power
in modern times. Quantitative forecasting models have been utilized across a wide
spectrum of business and industry. As shown in Figure 2, quantitative methods can
be classified as non-causal models and causal models [15]. Non-causal models are also
known as time-series models, which make forecasts by extracting systematic patterns
(such as trends and seasonality) from historical time series data. Causal models
are also known as cause-and-effect models, which investigate how the variable being
forecasted is determined by its relevant influential factors. We will take a brief look
at the leading quantitative methods in the following.

3.1 Time Series Models

Time series models predict values of the variable being forecasted based on historical
patterns. Thus the basic underlying assumption of these methods is that future
patterns are similar to historical patterns. To extract characteristics of time series
patterns, four basic properties of data are often analyzed:

• Trend. Given a set of time series data, the term trend refers to a stable tendency
of growth or decline exhibited in the data. The trend of a time series can be
either linear or nonlinear. Accordingly, linear and nonlinear functions can be
utilized to model the trend.

• Seasonality. If a pattern always repeats at a fixed interval, it is called a seasonal
pattern. Seasonality is a very common characteristic of time series data. For
example, air temperature exhibits a strong yearly seasonal pattern.

• Cycles. Cyclic patterns are similar to seasonal patterns, except that they repeat
at varying intervals. For example, it is common to find nonstationary cycles in
financial time series data.

• Randomness. Most time series data are assumed to contain both systematic
patterns and random noises. The randomness usually makes the pattern difficult
to identify. Most time series models include a noise term to take into account
the effects of randomness.

Various time series methods have been developed to analyze these properties of time
series data. Five of the most popular ones are moving average, exponential smoothing,
Box-Jenkins models, state-space models, and spectral methods.

3.1.1 Moving Average (MA)

MA models are simple but popular forecasting methods in time series analysis. A
MA model involves taking arithmetic average of N most recent observations, where
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N is a specified number according to the nature of the data to be forecasted. For
example, if you are forecasting monthly sales, you might use 12-month MA model,
which takes the average sales over the past 12 months. A one-step-ahead MA model
of N periods is given by

Ft+1 =
1

N

t
∑

i=t−N+1

xi =
xt + xt−1 + · · ·+ xt−N+1

N
, (1)

where Ft+1 is the forecast for the t + 1 period, and xis, i = t − N + 1, . . . , t are
the observations in the past N periods. The mean of N most recent observations is
used as the forecast of the next period. The moving averages method is probably the
most commonly used technique to smooth out short-term fluctuations and capture
characteristics of varying trends in time series data.

3.1.2 Exponential Smoothing

Exponential smoothing assigns exponentially decreasing weights as observations get-
ting older. The most commonly used single exponential smoothing is given by

F0 = x0, (2)

Ft+1 = αxt + (1− α)Ft = Ft + α(xt − Ft), (3)

where α ∈ [0, 1] is the smoothing factor, Ft+1 is the new forecast for next period, xt

is the current observation at period t, and Ft is the last forecast made in period t−1.
In the above formula, one can substitute Ft = αxt−1 + (1 − α)Ft−1, and continue so
forth to obtain the infinite expansion of Ft as follows

Ft =

∞
∑

i=0

α(1− α)ixt−i−1 =

∞
∑

i=0

αixt−i−1, (4)

where αi = α(1 − α)i. From this expression, one can see clearly that the weight
αi decreases exponentially with time. This illustrates why this method is called
‘exponential smoothing’. Single exponential smoothing works best only for stationary
time series data. Double exponential smoothing has been developed to handle time
series data with linear trends. And triple exponential smoothing has been proposed
to deal with both trend and seasonality. A very detailed discussion of exponential
smoothing techniques can be found in [9, 10].

3.1.3 Box-Jenkins Methods

Box-Jenkins methods, named after the statisticians George Box and Gwilym Jenkins,
who applied autoregressive moving average (ARMA) to make forecasts for time series
data [4]. An ARMA model can be generally described by

xt = c+ ǫt + a1xt−1 + a2xt−2 + . . .+ apxt−p,−b1ǫt−1 − b2ǫt−2 − . . .+ bqǫt−q, (5)

= c+

p
∑

i=1

aixi −

q
∑

j=1

ajǫj , (6)
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where xt is the current observation, xt−1, . . . , xt−p are the observations in the past p
periods, and the a1, . . . , ap are the regression coefficients of the past p observations.
The ǫt is the current prediction error, the ǫt−1, ǫt−2, . . . , ǫt−q are the past q prediction
errors, and the b0, b1, . . . , bq are the associated regression coefficients. ARMA model
assumes that the time series to be analyzed is stationary. To handle the nonstationar-
ities such as trend and seasonality, Box and Jenkins proposed a differencing version of
ARMA model, which is known as ARIMA model. The ‘I’ stands for ‘Integrated’, since
the estimation process is performed on differenced data, and the time series needs to
be integrated before making a forecast. More mathematical details of Box-Jenkins
model can be referred to Box et al. [4].

3.1.4 State Space Models

State space models virtually build up a generalized representation of linear time series
models in state space form. For example, one can represent an ARIMA model in state
space form. Once a state space model is built, it can be conveniently analyzed by
Kalman filter and the associated smoother. Kalman filter is a recursive procedure to
compute the optimal estimator of the state vector at time t, based on the information
available at time t. The parameters of a state space model are usually estimated
by maximum likelihood functions. State space method is a sophisticated form of
forecasting models. A detailed discussion of various algorithms of state space models
can be found in Harvey [14].

3.1.5 Spectral Analysis

Spectral analysis represents a group of methods which decompose time series data
into a few underlying sine and cosine functions of different frequencies. Compared to
ARIMA or Exponential Smoothing techniques, for which seasonal period is known
as a priori in the analysis, spectrum analysis is suitable to deal with the seasonal
series data for which lengths of cyclic patterns or fluctuations are changing rapidly or
difficult to estimate. In spectral analysis, some important recurring cycles of different
frequencies in the time series can be discovered. Those patterns may be hidden in
random noises and are extremely difficult to find out by other methods. The most
common spectrum decomposition process is also referred as Fourier analysis, which
can be considered as a linear multiple regression process. The dependent variable
is the time series to be studied, and the independent variables are sine and cosine
functions of all possible frequencies. In general, a spectral decomposition model is
give by

xt = c +

k
∑

j=1

(akcos(ωjt) + bksin(ωjt)), 0 < ω1 < · · · < ωk < π (7)

where ω1 < · · · < ωk are k possible wave lengths of the cyclic patterns in the time
series, a1, a2, . . . , ak, and b1, b2, . . . , bk are regression coefficients that represent the
degree of corresponding sinusoidal functions are correlated with the data. In other
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words, a large sine or cosine coefficient indicates a strong periodicity of the respective
frequency in the data. There are various techniques available to perform spectral
analysis for time series data. A comprehensive discussion of spectral analysis can be
found in Koopmans [17].

3.2 Casual Models

Causal models are also known as cause-and-effect models, which establish a causal
relationship between the variable being forecasted and all other related variables. The
most well known causal models are called regression models, which build up a rigorous
mathematical model of causal relationship based on sound statistical techniques. In
a regression model, the variable to be forecasted is called dependent or response
variable, and the variables that represent the causal factors of the dependent variable
are called independent or explanatory variables.

3.2.1 Regression Models

Regression models are in principle to investigate the relationship between one depen-
dent variable and its relevant independent predictor variables. In general, a standard
regression model takes the form as follows

Y = b0 + b1X1 + b2X2 + · · ·+ bnXn, (8)

where Y is the forecasted value of the dependent variable, b0 is the intercept, and
b1, b2, . . . , bn are the estimated regression coefficients representing the contribution of
the independent predictor variables X1, X2, ..., Xn, respectively. When linear regres-
sion models do not appear to adequately capture the relationships between dependent
and predictor variables, nonlinear regression models (such as polynomial regression)
can be used. An overview of the popular nonlinear regression models can be found
in Seber and Wild [23].

3.2.2 Econometrics Models

In many real problems, the cause-and-effect relationship between dependent and in-
dependent variables are not straightforward. The estimated model parameters by the
standard regression analysis may become inappropriate due to the highly dynamic
relationship between the dependent and independent variables. For example, we wish
to forecast sales of a product which are related to its price. However, the market price
in turn is also affected by sales. Another typical example is the supply and demand
model. The interaction of supply and demand jointly determines the equilibrium
price and quantity of the product in the market. In such cases, it no longer makes
sense to separate dependent and independent variables completely. To handle this
problem, a set of simultaneous regression models is necessary to describe dynamics
of these systems. The simultaneous regression models are called econometrics models
in literature, since they are often applied to analyze the relationships between eco-
nomic variables that should be jointly determined. One can consider that a single

8



regression model is a special case of econometrics models. The rigorous mathematical
formulations of econometrics can be found in Pindyck and Rubinfeld [18].

3.2.3 ANN Models

Artificial neural networks (ANNs) represent another important form of causal models,
which have shown powerful capabilities of modeling complex relationships between
inputs and outputs. An ANN model consists of a network of neurons connected by
arcs with assigned weights. Neurons take some form of basic nonlinear functions.
Therefore, an ANN model can be equivalently considered as a nonlinear regression
model in mathematics. A typical ANN has three layers, an input layer, a hidden
layer, and an output layer. As a causal model, the inputs to an ANN are independent
or explanatory variables, and the outputs are dependent or response variables being
forecasted. There are various algorithms available to train ANNs, such as Perceptron
learning rule and backpropagation [20]. Once the structure and weights of an ANN is
determined, it can be employed to perform forecasting. ANNs have been increasingly
used in forecast modeling in the past decade. They are suitable for complicated
problems which are difficult to be mathematically formulated by regression models
or econometric models. In many real applications, ANN methods can often achieve
good performance if given enough training data. An overview of the applications of
ANNs in forecasting can be found in Zhang et al. [27].

4 Comparing and Selecting Forecasting Models

We have discussed the most popular forecasting models above. Table 1 below summa-
rizes the appropriateness of the three major types of forecasting models. To evaluate
forecast models, two aspects of terms are often concerned about: accuracy and bias.
Accuracy refers to the distance between the forecasts and actual values. And a fore-
cast is biased if the errors in one direction are significantly larger than those in other
directions. In general, the basic objective of all forecast models is to maximize accu-
racy and minimize bias. After fitting several model candidates to a given data set,
the next step is to compare and select the best forecasting model. A lot of criteria
have been proposed to compare forecasting models, which will be discussed in the
following.

4.1 Forecast Error Measures

To achieve high prediction accuracy is the primary objective in most forecasting tasks.
To evaluate forecasting accuracy, four of the more popular direct error measures are
mean squared error (MSE), or its variants such as root mean squared error (RMSE),
mean absolute error (MAE), and mean absolute percentage error (MAPE). Minimiz-
ing these measures is usually the most essential criterion in comparing forecasting
models. These measures are most frequently used due to their mathematical con-
venience. For each of these measures, a smaller value indicates higher prediction

9



Model Type Applicable Situations Horizon Data Types

Qualitative Models No Past data, no ideas
about causality, data too
costly to collect, short-run
accuracy no required.

either long-
run or short-
run

background in-
formation, sur-
vey

Time Series Models Historical time series data
available, stable patterns
exist, short-run accuracy
needed.

short-run time series data

Causal Models Past data available, causal
relationship is clear and sta-
ble, explanatory variables
are controllable.

short-run response and ex-
planatory data

Table 1: The applicable situations for different types of forecasting models.

accuracy. Given a set of real data yi, i = 1, 2, . . . , n, each of which has an associated
forecast value ŷi, then these measures are defined as follows

MSE =
1

n

n
∑

i=1

(yi − ŷi)
2, (9)

RMSE =

√

∑n

i=1
(yi − ŷi)2

n
, (10)

MAE =
1

n

n
∑

i=1

|yi − ŷi|, (11)

MAPE =
1

n

n
∑

i=1

|
yi − ŷi
yi

.| (12)

The R-squared (R2), also known as coefficient of determination, is another most
commonly used criterion to evaluate a forecast model. The most general form of the
R2 is defined as follows

R2 = 1−

∑n

i=1
(yi − ŷi)

2

∑n

i=1
(yi − ȳi)2

= 1−
SSerr

SStot

, (13)

where ȳ =
∑n

i=1
yi/n, it is the mean of the observed data. The second term compares

the variance of the forecast errors with the total variance of the data. One minus the
second term is the proportion of variability in a data set that can be explained by
the forecast model. R2 is used to measure how well a model approximates real data
values. The magnitude of R2 is usually restricted within 0 and 1. An R2 close to 1.0
indicates that the model perfectly fits the data, while an R2 close to 0 means that
the model cannot explain the data at all.
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4.2 Information Criterion

A number of model selection criteria have also been developed based on information
theory. A well-known criterion is Akaike’s information criterion (AIC) developed by
Akaike in 1974 [1]. It makes a tradeoff between accuracy and complexity in model
construction. In general, this criterion can be defined as:

AIC(K) = log(MSE) +
2K

n
, (14)

where K is the number of parameters in the model, n is the number of observations in
the data. The MSE has been defined above, and it can be explained as the estimated
residual variance in this criterion. In the formula of AIC, the first term indicates
model accuracy, and the second term indicates model complexity in terms of the
number of parameters. Hence AIC not only rewards prediction accuracy, but also
gives a penalty to larger number of model parameters. One major benefit of this
penalty is to discourage overfitting. For a set of models, the one with the lowest AIC
value is considered as the preferred model. This criterion is particular suitable for
comparing a set of nested models. For example, compare an AR(m) model with an
AR(m+1) for a given set of data. One drawback of AIC is that it is not consistent,
since as the number of observations grows, the probability of selecting the correct
model does not approach one.

The Bayesian information criterion (BIC), also known as Schwarz criterion, is
another well-known criterion to select a set of parametric models with different choices
of explanatory parameters [22]. BIC is actually a variant of AIC in a form of:

BIC(K) = log(MSE) +
log(n)K

n
. (15)

The BIC also makes a tradeoff between accuracy and complexity of a model. For a
set of models, the one with the lowest value of BIC is the one to be preferred. It
differs from AIC in that the penalty coefficient of K becomes log(n)/n instead of
2/n. The BIC generally penalizes free parameters more strongly than does the AIC.
In addition, Hannan and Quinn [13] also proposed an alternative to AIC and BIC
called Hannan-Quinn criterion (HQC), which is given by

HQC(K) = log(MSE) +
2Klnln(n)

n
. (16)

Similar to AIC and BIC, the model with the lower value of HQC is preferred. It has
been shown that consistency can be obtained by the BIC [22] or HQC [13, 12].

4.3 Cross-Validation

Cross-validation is also a commonly used technique to compare different predictive
models in practice [11]. Given a set of data, the basic idea of cross-validation is to
partition the data set into training and validating subsets, and estimate the predictive
accuracy on the validating data by the model obtained from the training data set.
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The MSE, RMSE, MAE, and MAPE can be used to measure the expected level of
fit of a predictive model. If a model fits the training data set very well but does not
fit the validation data, it is called overfitting. A good predictive model is supposed
to generate consistent results in both training and validating data sets. To reduce
the variability of the model evalutation, multiple trials of cross-validation are usually
performed with respect to different partitions to the original data set. The evaluation
result of a predictive model is the averaged result over these trials. There are several
different approaches to perform multiple steps of cross-validation.

• Repeated Random Partition Validation: this method simply divides the dataset
into two subsets randomly each time and repeats the same procedure a number
of times. One problem of this method is that the validation subsets may overlap
and some observations may never be selected in the validation subsets.

• K-fold cross-validation: the dataset is partitioned randomly into K subsets.
Then the cross-validation is repeated K times. Each time one of the subsets is
reserved as the validation data, and the remaining K−1 subsets are the training
data sets. The validation result is the average over K results. This approach
guarantees that each observation can be used for validation exactly once.

• Leave-one-out cross-validation: this method is actually a special case of K-fold
cross-validation, when the number of observations in each subset is one. In other
words, only one observation is reserved for validation and the remaining obser-
vations are used for training. The procedure is repeated until each observation
has been used once for validation.

4.4 Stepwise Model Selection

Stepwise model selection approaches are very useful for automatically selecting a set
of nested predictive models, for which there are a large number of potential predictive
variables [6]. The selection procedure is generally grounded in some statistical tests
and usually takes in the form of partial F-test. Other measures can also be used, such
as t-tests, R2, AIC, and BIC. Since the basic procedures are similar, only the case of
partial F-test is discussed here. To compare two nested models with different number
of predictor variables, the partial F-test can be generally formulated as follows:

F =
Extra sum of squares/Extra model df

SSR of large model/Residual df Large model
, (17)

where SSE denotes the sum of squared residual. The key idea of this test is to check
if the ‘extra’ predictors of the large model explain significantly more of the variability
compared to the variability that is explained by the predictors that are already in the
small model. Based on partial F-test, three approaches are commonly used for model
selection:

• Forward selection: starts with the smallest number of possible predictors and
adds predictors one by one until a stop criterion is satisfied or the largest model
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is reached. The current model satisfying the stop criterion is selected. In
particular, suppose that the current model has P parameters, and we want to
test if one of the model with P + 1 parameters is more preferred. If for all
models of P + 1 parameters, it satisfies

F =
SSE(P + 1)− SSE(P )

SSE(P + 1)/n− P − 1
< Fm,P , (18)

where Fm,P is the critical values of F-statistic for a chosen level of significance.
Then stop the process and the current model with P parameters is preferred.
Otherwise, select one preferred model of P + 1 parameters, and repeat the test
for all models with P + 2 parameters, and so forth.

• Backward selection: starts with the largest number of possible predictors and
removes predictors one by one. At each step, it compares all the smaller model
candidates with the old larger model and stops the process if

F =
SSE(P − 1)− SSE(P )

SSE(P )/n− P
< Fm,P . (19)

• Stepwise selection: a modified version of forward-selection which allows the
elimination of predictors those become statistically insignificant in the model.
At each step of the process, the p-values of all predictors are computed. If the
largest of these p-values is greater than a critical value, then the corresponding
predictor is eliminated. Other steps are all the same with those of forward
selection.

4.5 Residual Diagnostics

Residuals represent the portion of the validation data not explained by the model.
The graphical residual analysis is commonly used in complementary with the quan-
titative techniques. A typical residual diagnostics includes plots of residuals versus
the predicted values, versus other predictors, and versus time, residual autocorrela-
tion plots, residual histogram, and normal probability plots. In general, the residual
analysis can be used to test the following:

• Whiteness test: a good predictive model should have the uncorrelated residuals.

• Independence test: a good model should have residuals uncorrelated with past
inputs.

• If there are some extreme influential observations. Identifying and deleting
outliers from the training dataset may significantly improve the quality of a
model.

• If the residuals exhibit systematic patterns and bias. The residuals of a good
model should be approximately dispersed around zero evenly. If systematic
patterns are found, the most probably reason is that one or several relevant
predictors are missing. A forecast is biased if residuals in one direction are
significantly larger than those of the other direction.
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4.6 Qualitative Considerations

Any forecasting model will be inevitably used by people. Thus qualitative consider-
ations can also be a very important factor in evaluating various forecasting models.
The qualitative criteria includes intuitive reasonableness of the model, simplicity of
the model, ease of use in practice, ease of explanation and understand, quality of fore-
cast plots and demonstrations, etc. Moreover, if two models have similar predictive
performance, the simpler model is usually preferred. One famous principle is called
Occam’s razor, which suggests that when competing theoretical models are equal in
other respects, it is recommended to select the model which introduces the fewest
assumptions while still sufficiently answering the question. More details of Occam’s
razor can be referred to Soklakov [25].

5 Conclusion

This paper reviews the most commonly used forecasting methods including both qual-
itative and quantitative methods. Quantitative methods are based on rigorous math-
ematical formulations, while qualitative methods are based on subjective judgment.
Different forecasting methods have distinct different characteristics and applicable
areas. To select appropriate forecasting models, one generally needs to consider the
following important factors before model construction:

• What is the objective of forecasting, short-run or long-run?

• What types of data or explanatory variables are available?

• How much accuracy is required?

• Make a tradeoff between the costs and gains of developing a forecasting model.

Once a number of model candidates are selected, one should use one or more eval-
uation criteria to select the best forecasting model. Although quantitative models
are mainstream approaches in forecasting, they are often used in combination with
qualitative techniques involving human judgment. Broadly speaking, quantitative
methods usually provide tools for decision support, while quantitative and qualita-
tive techniques together are used for decision making in most of the real world cases.
Therefore, a comprehensive assessment of forecasting performance usually consists
of both quantitative and qualitative analyses to enhance the forecasting rationality
in practice. A very good review of combining qualitative methods with quantitative
techniques can be found in Webby and O’Connor [26] and Armstrong and Collopy
[3].
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