
Operation Research and Data Mining

Shouyi Wang, Yaju Fan, Wanpracha Chaovalitwongse

Abstract

Data mining (DM) and operations research (OR) are two largely independent paradigms
of science. DM involves data driven methods aim to extract meaningful patterns from
data instances whereas OR is based on model formulations and optimization algo-
rithms to achieve optimal solutions for complex problems. DM and OR are also two
overlapping disciplines. There is a growing interest to apply OR techniques to deter-
mine the underlying fitting structures of data samples in data mining problems; and
many operations research problems have to include a data collection and analysis part
to derive relevant variables in OR decision models. This paper provides a description
of the most popular data mining techniques in use today in term of the basic methods
and applications, and then present a review of how OR techniques can be applied to
DM problems.
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1 Introduction

Data has become an essential part of today’s world in the past decade, it is estimated
that the amount of information in the world doubles every 20 months and the size
and number of databases are increasing even faster. With this explosion in data and
information, DM techniques have became ubiquitous with an explosion of interest
from both academia and industry. The methods applied to extracting patterns from
data have a long history for centuries, such as sorting data manually or using various
hypothesis driven methods. However, it is extremely difficult to transform data into
valuable knowledge by the traditional means of analysis in large volume of data in
modern times. This motivates the development of modern DM methods, which are
designed discover meaningful representations of data structure using pattern recog-
nition, statistical and mathematical techniques. Generally, the analysis process of
DM starts with a set of data based on which valuable knowledge is acquired. Once
knowledge has been acquired this can scale up to be applied to very large databases
under the assumption that they have a structure similar to the sample data.

Compared to DM, a quite young discipline, OR is a mature subject that may
be traced to the early research of the optimization problems of transportation and
mail system by the English mathematician Charles Babbage (1791-1871). The goal
of OR is generally to achieve optimal solutions of some objective function to complex
problems using mathematical modeling and optimization algorithms. Today, there
are numerous well-developed OR techniques that have been used routinely to solve
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problems in a wide range of application areas. Basically, OR and DM are two inde-
pendent fields with distinct objectives. OR tries to provide optimal solutions to a
given target, while DM aims to discover unknown structures or relations to a given
data set. However, the intersection between OR and DM is also quite broad. Each of
them could benefit from making using of the other. For example, OR techniques could
enhance the efficiency of a DM process by embedding various optimization tools, and
DM could provide a concise and meaningful data space that may greatly facilitate
an OR process. Recently, a growing interest in the integration of OR and DM can
be observed in both of OR and DM literature. Of a particular interest, the focus of
this paper is basically on the use of OR in DM. The rest of this paper is organized
as follows, firstly the most popular and widely used DM methods are presented, and
then the important applications of OR techniques in DM are discussed; finally the
concluding remarks and discussion are given.

2 Data Mining Approaches

Data mining can be broadly categorized as either supervised or unsupervised learning.
In supervised methods, the algorithm is provied with a set of training data whose class
attributes are known. If class information of data are not available, the unsupervised
techniques can be employed, such that clustering algorithms are designed to discover
underlying groupings (or clusters) of data instances, and rule association rules aim to
discover all associations and correlations among data items. In the following section,
a number of most important algorithms from the two major classes of data mining
will be described. Although there are many other algorithms and variations of the
techniques described, the algorithms presented here are mostly basic ones that have
been widely used in real world applications of DM and OR.

2.1 Supervised Learning Methods

Supervised learning approach constructs a predictive function from training data,
which consists of a set of desired input-output pairs. Supervised learning algorithms
first find a global mapping between inputs and their corresponding outputs to the
highest possible extent, and then make predictions of future outputs to input values
that it has never seen by their generalization capability. Generally, a good general-
ization of supervised learning requires a training data set that contains sufficiently
large and representative of all cases so that a valid general mapping between outputs
and inputs can be found. Supervised learning is one of the most frequently used data
mining techniques, and a large number of supervised learning algorithms have been
developed in the last decades. The most popular ones are discussed here.

Decision Tree: Decision tree is a hierarchical tree structure that is used to classify
data classes based on attributes of data instances. In a decision tree, nodes represent
classification attributes and branches represent conjunctions of attributes that lead
to those classifications. Given a set of training data of attributes together with their
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associated classes, a decision tree can be induced in form of a sequence of rules that
are used to recognize data classes. Once a decision tree is formed, it can be easily
used to classify unseen data instances based on their attribute values starting at the
root node.

The key to building a decision tree is to choose attributes in order to branch.
The objective is to reduce impurity or uncertainty in data as much as possible. A
subset of data is pure if all instances belong to the same class. There are several
popular decision tree algorithms such as ID3, C4.5 and CART that perform well in
tree regression. In general, the decision tree algorithms are recursive. The most well-
know algorithm to generate decision trees is known as C4.5 [36]. C4.5 builds decision
trees from a set of training data by using the concept of Shannon entropy [46], which
is a measure of uncertainty associated with a random variable. Based on the fact
that each attribute of data can be used to make a decision that splits the data into
smaller subsets, C4.5 examines the relative entropy for each attribute, the attribute
with the highest normalized information gain is used to make decisions. Ruggieri [40]
provided an efficient version of C4.5, called EC4.5, which was claimed to be able to
achieve a performance gain up to five times while compute the same decision trees
as C4.5. Olcay and Onur [51] presented three parallel C4.5 algorithms which were
designed to be applicable to large data sets. Baik and Bala [3] presented a distributed
version of decision trees. In this agent-based approach, agents generate partial trees
and communicate the temporary results among them in a collaborative way. The
experimental results gave a very good performance of distributed decision trees for
the data sets collected from distributed hosts.

Decision trees provide an effective method of decision making since they do not
require any knowledge or parameter setting. One of the most useful characteristics
of decision trees is that they are simple to understand and interpret. People can
understand decision tree models after a brief explanation. The assumption made in
the decision trees is that data instances belonging to different classes have different
values in at least one of their features. Therefore, decision trees tend to perform
better when dealing with discrete or categorical features.

Neural Network: Neural networks (NNs), inspired by the structure of biological
neurons, are powerful tools that have been widely used to solve many problems of
classification where there exists sufficient amount of observation data. Neural Net-
works have gained this popularity due to their powerful capacity to model extremely
complex non linear functions and to their relatively easy use with well developed
training algorithms. To train a NN, one first presents to the network with a set of
training data with inputs and desired outputs, and then adjusts the weights of the
NN in such a way that the error between the desired and actual outputs from the
training data is minimized. The mean-squared error is the most commonly used error
cost function, which is represented by:

E =
1

N

N∑

i=1

(f(xi) − yi)
2, (1)
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where xi, yi are the input and output of training data, f(xi) is the output of NN with
respect to the input xi, and N is the number of training data.

To minimize the error cost function, one of the most widely used update rule is
called perceptron learning rule, which was developed by Rosenblatt [39] in the 1950’s.
The basic perceptron update rule is given by:

ω(j) = ω(j) + α(δ − y)x(j), (2)

where x(j) denotes the jth item in input vector, ω(j) denotes the jth item in weight
vector, y denotes the output from the neuron, δ is the expected output, α is a con-
stant called learning rate that satisfies 0 < α < 1 and indicates the relative size of
change in weights in every iteration.

Bayesian Learning: Bayesian decision theory is one of the most widely used statis-
tical approaches to solve problems in machine learning. The basic idea of Bayesian
learning is based on the estimation of probabilistic decisions [16], which can be de-
scribed by the Bayes formula as follows:

P (H|D) =
P (D|H)P (H)

P (D)
(3)

where P (H) is called prior probability of hypothesis H . It is the probability that
H is correct before the data D was seen; P (D|H) is called likelihood probability. It
is the probability based on observation data D given that the hypothesis H is hold.
P (D) is the prior probability that the data will be observed. It is the probability
of witnessing the data D under all possible hypotheses. The ratio P (D|H)/P (D) is
called irrelevance index. If the irrelevance index is 1, any knowledge about H is not
relevant to D. Any value below 1 measures the relevancy between D and hypothesis
H . P (H|D) is the posterior probability. It is the probability that the hypothesis H
is true, given the data and the previous state of belief about the hypothesis.

Compared to decision trees and NNs, Bayesian learning takes into account the
probability of prior information. It is a supervised learning method that is studied
from a probabilistic point of view. It start with a prior belief of an event and af-
ter observing the event the belief is revised to reflect the experience. The belief is
represented as probabilities and the posterior probability is a product of the prior
probability and likelihood. Bayesian learning has become popular in recent years
largely due to this property which models the belief revision system of humans quite
closely [44]. Bayesian learning approach has been widely used to solve many emerg-
ing problems in diverse domains (e.g., internet [31], epidemiology [32], robotics [48]).
where evidence is a new observation of data instance, the prior reflects the current

knowledge about an event before we have seen this newly observed data instance,
the likehood is the conditional probability of seeing this new evidence given that
the prior knowledge is true, and finally posterior is calculated by the above formula
to reflect the updated knowledge about the event after we have observed the new
evidence [16].
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K-Nearest Neighbor (KNN): KNN is a supervised learning algorithm where the
result of a new instance is classified based on the majority category of its K-nearest
neighbor. It is a type of instance-based learning, the classifiers do not require model
building or parameter estimation, and only based on the attributes of training sam-
ples. A data instance is classified by a majority vote of its K closest neighbors.
The data instance is then assigned to the most common class amongst its K nearest
neighbors. Any ties can be broken at random. If K = 1, then the instance is simply
assigned to the class of its nearest neighbor.

The classification accuracy of KNN can be severely degraded by the presence of
irrelevant features, or if the feature scales are not consistent with their importance.
Therefore, the effects of feature standardization should be be performed and com-
paratively assessed before using KNN classification. The distance measure is also
essential to kNN approaches. Using a distance measure that is appropriate for the
data at hand is important. There are numerous distance measures, of which Euclidean
distance is commonly used in KNN. One major problem of KNN is that the classes
with more frequent samples tend to dominate the prediction of new instances, as they
tend to come up in the K nearest neighbors due to their large populations. One way
to overcome this problem is to take into account the distance of each K nearest neigh-
bors with the new test data and predict the class of data instances based on these
distances. Another disadvantage of KNN is computational expensive since we have
to compute distances to all training examples. Therefore a key issue in much KNN
research effort has been put into selecting or scaling features [52]. A good selection
of features without redundant ones could improve classification accuracy and scale
down computation time considerably.

Support Vector Machines: Support vector machine (SVM) is a widely used tech-
nique for classification and regression [14]. The key concept of SVM is to project
input data instances into a higher dimensional space and divide the space with a
continuous separation hyperplane while iteratively minimizing the distance of mis-
classified data instances from the hyperplane. In other words, SVM generally aimed
at finding an optimal hyperplane that separates labeled data into two groups, say A
and B. The optimal hyperplane can then be used for classifying new observations.
The term “optimal” is used because a set of data of two groups may have many
possible separating planes. SVM only finds one separating hyperplane that has the
largest margin. The margin is defined as the minimum distance from the hyperplane
to all other elements in each group. The resulting optimal hyperplane is intuitively
reasonable. It is because the hyperplane has the longest distance to the data points
in neighborhoods of both classes, and thus a good separation is achieved. There have
been many variations of SVM models. One of the most successful models uses the
idea that once a data set is transformed into a high dimensional space, which is called
kernel transformation, every data instance can be classified by a separating plane if
the new dimension is sufficiently high enough [10].
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2.2 Unsupervised Learning Methods

Clustering: Unsupervised learning is inspired by brain’s ability to extract statistical
patterns and recognize complex visual scenes, sounds, and odors from sensory data.
It takes root in neuroscience/psychology and is established on information theory and
statistics. Unsupervised learning is used to reveal and capture unknown, but useful
data groupings in a given data set autonomously. The goal of unsupervised learning is
to build meaningful representations of data sets that can be used for decision making,
prediction, and efficient communication. Unsupervised learning has wide applications
in biology, medicine, market research, and robotics, etc.

Unsupervised learning, usually refers to clustering, deals with data that have
not been pre-classified in any way, and does not need any type of supervision dur-
ing the learning process. It is a learning paradigm which automatically assigns the
received data into meaningful clusters based on their similarity. The similarity mea-
sures between two clusters drawn from the same feature space are essential to most
unsupervised leaning algorithms. Because of the variety of similarity measures avail-
able, one must carefully choose the measures, which will highly influence the shape
of clusters, as some elements may be close to one cluster according to one measure
and further away according to another. There are many approaches to define sim-
ilarity or distance between data instances, such as Euclidean distance, Manhattan
distance, Hamming distance, Mahalanobis distance, and angular separation, etc [15].
The performance of clustering algorithms can be evaluated by the inter-relationships,
namely, intra-connectivity and inter-connectivity. Intra-connectivity is a measure of
the density of connections between the data instances within a single cluster. A
higher intra-connectivity indicates a better clustering arrangement in a sense that
the data instances in the same cluster are highly dependent on each other. Inter-
connectivity is a measure of the connectivity between distinct clusters. A low degree
of inter-connectivity is desirable since it indicates that the individual clusters are
largely independent of each other.Clustering algorithms can be generally categorized
into partitioning methods, hierarchical methods, and distributed clustering methods.

Partitioning Algorithm: The most well-known partitioning algorithm is k-means
clustering. The goal of k-means clustering is to find k cluster centers that minimize
a squared-error criterion function [16]. Cluster centers are represented by the gravity
center of data instances; that is, the coordinates of a cluster center are the arithmetic
mean for each dimension separately over all the data instances in the cluster. The k-
means clustering assigns each instance to a cluster whose center is nearest to it. Since
the k-means clustering generates partitions such that each pattern belongs to one and
only one cluster, the obtained clusters are disjointed. In [17], a widely used clustering
algorithm called fuzzy c-means (FCM) was developed to allow one data instance to
belong to two or more clusters. Each data instance is associated with every cluster by
a membership function, by which it has a degree of likelihood to every cluster, rather
than just being assigned completely to one cluster. For example, the data instances
on the edge of a cluster may be in the cluster to a lesser degree than the instances
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around the center of the cluster. FCM finds the most characteristic data instance in
a cluster to be the ‘center’ of the cluster, and then assigns the grade of membership
for each data instance in the cluster.

Other than gravity center, many clustering algorithms try to find clusters based
on data density in a region. For a given radius, the neighborhood of each data in-
stance of a cluster has to contain a minimum number of data instances. The most
well known density-based clustering algorithms are Density-Based Spatial Cluster-
ing of Applications with Noise (DBSCAN) [18], Generalized Density-Based Spatial
Clustering of Applications with Noise (GDBSCAN) [42], Ordering Points To Identify
the Clustering Structure (OPTICS) [2], Local Outlier Factors (LOF) [9], and Fast
Density-Based Clustering (FDC)[55].

There are also some clustering algorithms that have been developed from Expectation-
Maximization (EM) algorithms [30]. These EM based clustering algorithms first build
a probability model to describe the probability that a data instance belongs to a cer-
tain cluster, then calculate the cluster probabilities for each data instance based on
some initial guesses of model parameters. Subsequently, the obtained probabilities
are in turn to verify the model parameters. The process is repeated to find the max-
imum likelihood estimates of the parameters in the probabilistic model. However,
the two major drawbacks of this kind of algorithms are expensive computation and
over-fitting.

Hierarchical Clustering: The clustering algorithms mentioned above all partition
data instances directly in a single step. On the other hand, hierarchical clustering,
which attempts to find successive clusters using previously established clusters, has
also been extensively researched. Hierarchical clustering takes a series of partitions,
which may separate the previous clusters successively into finer clusters, or proceed
a series of fusions of current clusters into larger clusters. Some well developed hier-
archical clustering algorithms are Balanced Iterative Reducing and Clustering using
Hierarchies (BIRCH) [54], Clustering Using Representatives (CURE) [21], a hier-
archical clustering based on dynamic modeling called CHAMELEON [27], and an
incremental hierarchical clustering algorithm called GRIN [12]. The major advan-
tage of hierarchical clustering is that it does not require the number of clusters to
be known in advance. However, these methods suffer from their inability to perform
adjustments once splitting or merging decisions are made.

Distributed Clustering: Recently distributed clustering algorithms have attracted
considerable attention to extracting knowledge from large databases [25], [1]. In
many cases nowadays, the data are originally collected at different sites, and then
brought together to extract information, these data sets are usually in huge size.
Instead of being transmitted to a central site where we can analyze data by standard
clustering algorithms, data can be clustered independently on different local sites.
In a subsequent step, the central site tries to establish a global clustering based on
the local clustering results. This approach is efficient, since local clusterings can be
operated in a parallel way.
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3 Operation Research in Data Mining

OR techniques can contribute to DM by developing better solution through various
well-developed optimization tools. Many DM methods can incorporate optimization
as a part of the DM problem or be directly formulated as an optimization problem.
In the following, we will make a review of how OR techniques (such as linear pro-
gramming, nonlinear optimization etc.) can significantly contribute to DM methods
at three major stages: data preprocessing, DM modeling and results optimization, as
shown in Figure

Define
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Figure 1: Block diagram of a data mining process model, and the use of OR techniques
in DM at three major steps.

3.1 Data Preprocessing

The preprocessing step also refers to feature selection in DM, which aims to deter-
mine the optimal training data set from raw data before applied into a DM model.
Optimization techniques can be quite useful in the dimensionality reduction by se-
lecting optimal subset of features. A good selection of input features can significantly
improve a DM algorithm in terms of modeling accuracy and fanning speed. The
problem of feature selection can be formulated as a mathematical program with a
parametric objective function and linear constraints. A good example of this field
can be found in Chaovalitwongse et al [11] who used a binary integer programming
formulation to solve the feature selection problem of massive electroencephalogram
data. This formulation actually repents a more general optimization framework of
feature selection which can be expressed as follows:

min f(X)

s.t. L ≤ ∑
xi ≤ U,

xi = 1 if feature i is selected, 0 otherwise,

xi ∈ X is the feature vector.

(4)

where U and L are the upper and lower bound of the number of desired features,
respectively.
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Pendharkar [33] formulated the feature selection problem as a set of binary vari-
able knapsack optimization framework. The optimization problem was solved by
using a hybrid heuristic based on simulated annealing and gradient-descent artificial
neural network. Yang et al. [49] provide a combinatorial formulation of feature se-
lection problem. A metaheuristic called the nested partitions method was applied.
Genetic algorithm (GA) was applied to their problem as a comparison. Their results
shown that the metaheuristic method was effective for the feature selection problem,
and was slightly better than the GA method. Janssens et al. [24] formulate the
problem as a shortest path network based on the discretization of the raw continuous
input data. They applied integer programming to select optimal boundary positions
which minimize the misclassification costs.

Siedlecki et al. [35] applied GA to performed feature selection for a KNN classifier.
Each feature was encoded as a candidate for GA chromosome, and a GA algorithm was
applied to assign optimal weight to each feature. Prior applied to a KNN classification
framework, the values of each feature are multiplied by normalized values of GA-
identified weights. Their later works expand this weight assignment approach to a
feature selection structure which was designed to select an ideal set of feature weights
[35]. The predictive accuracy of the KNN classifier was considerably improve by
searching for optimal feature weights or optimal feature set.

Another distinct OR method applied in DM problems is called Logical Analysis of
Data (LAD), which tries to find minimal sets of features necessary for explaining the
classification results. These combination of feature values form logical patterns that
can be used for further classification and can be explained by human experts. The
original LAD technique is used only for binary data proposed in [13]. To cope with
numerical data, a binarizing method is proposed in [8, 7]. As a result, LAD deals
with numerical data that have been transformed into binary values. The pattern
characteristics found by LAD can be easily explained, and therefore it becomes a
useful technique in practice, such as medical diagnosis [22]

3.2 DM Modeling

OR methods can be formulated as an important component of a DM model in many
studies. In other words, optimization-based algorithms can directly contribute to the
structure of a DM model and may generate new DM algorithms when combined with
various optimization techniques. Actually, many data ming process are fundamen-
tally optimization problems, such as SVM. Optimization techniques have been widely
applied to the construction data mining in both supervised classification and unsu-
pervised clustering models. For example, linear programming formulations are used
to find a classification hyperplane in support vector machine (SVM) [29], nonlinear
optimization with convex objective function and linear constrains is used in various
classification/regression model [53], combinatorial optimization models are used in
logical analysis of data (LAD) [13, 8, 7]. In the following, how optimization methods
can be applied to DM modeling are discussed, some of the most recent developed
techniques are reviewed.
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3.2.1 Classification

Neural Networks: NNs are a group methods that have great ability of classifica-
tion. The key part of NNs based methods is to choose an appropriate weight update
rule. Rumelhart et al. [41] proposed a pioneer work to apply gradient descent based
optimization method to update the weights of a multilayer NN. The this method was
later on developed into the most well-known and widely used NNs update algorithm
backpropagation (BP). BP employs error derivatives of NN’s weights during training
process. In other words, it calculates how error changes as each weight is increased
or decreased slightly. The update rule of BP is given by:

ω(j) = ω(j) − α
∂E

∂ω(j)
, (5)

where α is the learning rate, and ∂E
∂ω(j)

is the partial derivative of error cost function

E with respect to weight ω(j). BP neural networks have become popular in practice
since it can often find a good set of weights in a reasonable amount of time. There
have been many successful applications of BP in science, engineering, finance and
other disciplines.

However, since BP training is a gradient descending process, it is often trapped
in a local minima and is very inefficient in searching for global minimum in a NN’s
weight space. In the recent years, genetic algorithm (GAs), as a powerful global
optimization tool, has been growing rapidly in optimizing the weights of NN [50].
GAs have a potential to produce a global minimum in weight space and thereby avoid
local minima. They are also very useful to the problems where gradient information
is either not available or costly to obtain [47].

Simulated annealing techniques are also applied to gradient descent methods to
move out the local optima. However, one of the problems is that the the search
algorithm may get trapped into some cycles by doing so. For this problem, heuristic
search optimization techniques can be quite useful. An excellent example is the use
of tabu search introduced by Glover [20] in 1989. This method applies an iterative
greedy search algorithm using memory of past points visited. The tabu search imposes
a ”tabu” on some subset of searching space so as to avoid making mistakes a second
time. Battiti et al. [4] successfully applied the concept of tabu search to train the
weights of NNs, their results demonstrated that the method was effective in continuing
the search after local minima and the results were robust to random initial conditions.

Support Vector Machine: SVM is in principle an optimization based DM tech-
nique. The optimization formalism in SVM framework incorporates the concept of
structural risk minimization by determining a separating hyperplane that maximizes
not only a quantity measuring the misclassification error but also maximizing the
margin separating the two classes. One can define a hyperplane with normal ω ∈ R

d

and express the plane as
xTω = γ,
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where d is total number of features used to represent data cases, and γ ∈ R is a scalar.
The objective is to decide values of (ω,γ), which reach the maximum margin. Denote
the set A by the matrix A ∈ R

m×d and the set B by the matrix B ∈ R
k×d. m and k

are the number of cases which belong to groups A and B, respectively. The two sets,
A and B, separately fall in two open half spaces. The set A lie in {x|x ∈ �n, xT ω < γ}
and the set B lie in {x|x ∈ �n, xT ω > γ}. Let e denote a vector of ones with arbitrary
dimension. Then the following constraints must be satisfied:

Aω > eγ, Bω < eγ.

Variables (ω,γ) can be rescaled to obtain non-strict inequalities because strict inequal-
ity constraints are not valid in linear programming formulations. To scale them, vari-
ables (ω,γ) can be divided by the positive value of min

i=1,...,m,j=1,...,k
{Aiω−γ,−Bjω +γ}.

Without loss of generality, the equivalent inequalities can be written as

Aω ≥ eγ + e, Bω ≤ eγ − e. (6)

By this construction, the objective is to maximize the margin, 2
‖ω‖ . In practice,

most data sets are not perfectly separable. Hence, the assumption of having perfectly
separable data sets for SVM is violated, and there exists no solution of (ω,γ) such
that the inequalities (6) hold. For this reason, one tries to approximate the goal of
maximizing margin by minimizing an average sum of violations. This leads to the
development of robust linear programming formulation by Bennett and Mangasarian
(1992) [5]. The model is given by

min
ω,γ,y,z

eT y

m
+

eT z

k

s.t. Aω − eγ − e ≥ y,

−Bω + eγ − e ≥ z,

y ≥ 0, z ≥ 0.

(7)

The variables y and z in the constraints of this problem satisfy the conditions:

y ≥ max{0,−(Aω − eγ − e)}
and

z ≥ max{0,−(Bω + eγ − e)}.
Hence, y and z are vectors containing violations of constraints (6). Minimizing

the objective function of (8) leads to the minimum average violations.
The training optimization problem of SVM reaches a global minimum instead of

a local minimum, which may happen in other algorithms such as NNs. SVMs have
been applied to many real life problems including handwritten digit recognition [45],
object recognition [6], speaker identification [43], face detection in images [32], and
text categorization [26].
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3.2.2 Clustering:

The goal of clustering is to group a given data set based on a measure of similarity.
Optimization techniques also play an important role in various clustering methods,
since the problem is fundamentally to find the optimal groupings or relations from a
given data set. A comprehensive review of clustering and and optimization formu-
lations can be found in Hansen et al. [23]. In particular, Rao [37] was one of the
pioneers to apply linear and nonlinear programming formulations to solve clustering
problems in a efficient way. Another excellent example of this area is given by Bradley
et al. [34] who formulated a concave minimization problem for finding optimal clus-
ters. Given m points in a n-dimensional Euclidean space Rn, a fixed number of cluster
k, the centers of the cluster c is determined such that the sum of the distances of each
point to a nearest cluster center is minimized. The general nonconvex optimization
formulation can be expressed as follows:

min
C,D

∑m
i=1 min eT dil

s.t. −dil ≤ xi − cl ≤ dil,

i = 1, . . . , m,

l = 1, . . . , k.

(8)

where xi is the i-th point out of m, cl is the center of l-th cluster out of k, dil ∈ Rn

is the dummy variable used to bound the components of the difference between point
xi and the center cl, e is the unity vector. This general nonconvex problem was further
reformulated into an optimization structure which minimizes a bilinear function using
a k-median algorithm.

3.3 Result Optimization

Due to the large size of database, the results of many DM methods usually generate
numerous patterns or models, which are still hard to interpret and applicable to
solve target problems. In this perspective, OR techniques could play a valuable role
in mining result optimization and interpretation. Optimization formulations can be
built to select the best patters and models generated by a DM algorithm.

One good example comes from the research of Quinlan et al. [36] who proposed
a method of selecting the best decision tree using the Minimum Description Length
(MDL) principle [38]. A decision tree was first built using the standard DM algorithm
C4.5, and the optimal subtree structure was selected by the MDL, which select a
solution that minimizes the total number of bits needed to encode the tree and the
description of the data given by the tree. The optimization formulation of MDL
offered a way to prune the designed tree structure and thus avoid the problem of
overfitting. Kennedy et al. [28] provide an example for applying GA to select the
best decision tree generated by a decision tree induction model. In particular, they
encoded decision trees as chromosomes, and the prediction accuracy was defined as
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the fitness function of GA. Fu et al [19] also applied GA to determine the best choice
for multiple decision trees along the research line of Kennedy et al. [28], and a high
prediction accuracy was reported according to their studies.

4 Conclusions

In this paper, we first provide an overview of the most popular DM algorithms and
then pay a particular attention on the survey of how optimization techniques can be
applied to solve DM problems. In general, optimization can significantly contribute
to DM in three major steps:

• Optimal feature selection in data preprocessing step, which can significantly
reduce the data dimensionality and search space for DM models.

• Construct optimization formulations directly in DM models, develop efficient
optimization-based DM algorithms.

• Pick up the best patterns among a large number of candidates generated by
DM models.

The use of optimization techniques can considerably improve the performance of
DM in terms of efficiency, applicability and accuracy. We provide the most distinct
examples of OR applications in DM at each step, and demonstrate how optimiza-
tion frameworks can be formulated in DM structures. We believe that optimization
techniques can play a critical role in providing better and faster solutions to DM
problems. As a commentary part, DM methods can also contribute to OR problems
in building efficient decision models by providing concise and meaningful representa-
tions for a given data set. It is noted that this area is relatively less studied compared
to the numerous applications of OR in DM. The integration of OR and DM in a
closely complementary manner constitutes an future field of research for OR and DM
researchers.
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