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Abstract—Epileptic seizure prediction is still a very challenging
and unsolved problem for medical professionals. The current bot-
tleneck of seizure prediction techniques is the lack of flexibility for
different patients with an incredible variety of epileptic seizures.
This study proposes a novel self-adaptation mechanism which
successfully combines reinforcement learning, online monitoring
and adaptive control theory for seizure prediction. The proposed
method eliminates a sophisticated threshold-tuning/optimization
process, and has a great potential of flexibility and adaptability
to a wide range of patients with various types of seizures.
The proposed prediction system was tested on five patients
with epilepsy. With the best parameter settings, it achieved an
averaged accuracy of 71.34%, which is considerably better than
a chance model. The autonomous adaptation property of the
system offers a promising path towards development of practical
online seizure prediction techniques for physicians and patients.

Index Terms—biomedical data mining, adaptive seizure pre-
diction, reinforcement learning, online monitoring

I. INTRODUCTION

Epilepsy is one of the most common neurological disorders,

affecting approximately 1% of the world’s population [6].

Epileptic seizures generally occur without any warning, and

the shift between normal brain state and seizure onset is often

considered as an abrupt phenomenon. The unpredictability of

seizure occurrence represents a significant source of morbidity

in patients with epilepsy. Patients with epilepsy frequently

suffer from seizure-related injuries due to loss of motor con-

trol, loss of consciousness or delayed reactivity during seizure

onset [16]. At the moment, no technology is available to

provide a warning to these patients prior to seizure onset. The

ability to predict the occurrence of impending seizures could

significantly improve the quality of life of epileptic patients.

Seizure prediction may also lead to novel therapeutic strategies

for seizure control. For example, a prediction-triggered closed-

loop treatment may replace the traditional method of taking

anticonvulsant drugs daily. Such temporally targeted therapy

methods may largely reduce the side effects of current chronic

drug treatments as reported in [3]. Perhaps most importantly,

seizure prediction could give patients with epilepsy a greater

sense of control over their lives.

One crucial question in seizure prediction is that whether an

identifiable pre-seizure state exists. Over the recent years, there

has been accumulating evidence indicating that a transitional

pre-seizure state does exist prior to seizure onset. The majority

of the quantitative evidence supporting the existence of a pre-

seizure state is derived from Electroencephalography (EEG)

analyses of epileptic seizures. For example, Lehnertz and Elger

[12] showed that the correlation dimension decreases prior

to seizures. Le van Quyen et al. [19] reported a reduction

in the dynamical similarity index before seizure occurrence.

Iasemidis et al. [8] noted premonitory pre-seizure changes

based on the analysis of dynamical entrainment. Mormann et

al. [15] observed a pre-seizure drop in phase synchronization

up to hours prior to seizure onset. Recent studies suggests

that four stages are evolved in a seizure process: normal, pre-

seizure, seizure onset and post-seizure [13].

In the mid-1970s, Viglione and Walsh started the first

pioneering project to investigate the predictability of seizures

based on EEG data [25]. Since then, many studies have been

carried out aiming to predict epileptic seizures based on EEG

data. An extensive survey of EEG-based seizure prediction

techniques can be found in [14]. In general, most of current

seizure prediction methods mainly have two steps. Firstly,

EEG features are extracted from a sliding moving window.

Then each windowed EEG epoch is classified as either pre-

seizure or normal based on a threshold level. Whenever a

windowed EEG epoch is classified as pre-seizure, a warning

alarm is triggered indicating that an impending seizure may

occur within a pre-defined prediction horizon. Although these

methods have shown good results for some patients, the

reliability and repeatability of the results have been questioned

when they were tested on other EEG datasets. Many of the

earlier optimistic findings cannot be reproduced or achieved

poor performance in extended EEG datasets in later studies

as reported in [2]. This is not surprising since the optimal

threshold obtained from a few number of patients may not

be suitable to many others. The current seizure prediction

techniques are still in their early stage. Before considering

clinical applications, the evaluation of a seizure prediction

method is still to test whether the prediction performance is

consistently better than a chance level in most research efforts

[27], [1], [11].

The biggest challenge of seizure prediction is the high

inter- and intra-individual variability among the patients with

epilepsy. The high variability makes the traditional nonadap-
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tive methods difficult to function well for a wide range of

patients with different epilepsy. This variability also highlights

the emerging needs for automated adaptive learning frame-

works for seizure prediction. On the other hand, the explosion

of computing power has facilitated the rapid development

of data mining and machine learning techniques in recent

years [10], [26]. These techniques have found widespread

applications to discover knowledge and make decisions from

tremendous and rapidly expanding data in modern times. We

regard the future perspective of a practical seizure prediction

system should be autonomously adaptive to an individual

patient with intelligent learning ability. Therefore, we focus

on constructing an adaptive learning framework, which is

capable of online monitoring the EEG recordings of a patient

and updating timely to achieve the patient-specific seizure

prediction. In the past, our group has been dedicated to

develop online automated seizure prediction algorithms which

could adaptively select the most critical electrodes after each

prediction [9], [4], [21]. In this study, inspired by the great

reinforcement learning ability of human beings, we attempt

to construct an adaptive learning system, which could interac-

tively learn from a patient, and achieve improving prediction

performance over time. The proposed adaptive framework

combines reinforcement learning, online monitoring, and feed-

back control theory into an online seizure prediction system.

This adaptive learning framework offers an alternative path

towards the development of practical intelligent devices for

patient-specific online seizure prediction.

This paper is organized as follows. Section II presents the

EEG data collection, feature extraction, and the proposed

adaptive learning frameworks. The experimental results are

provided in Section III, and we conclude the paper in Section

IV.

II. METHODS

A. Data Collection
In this study, we used a dataset containing continuous

intracranial EEG recordings from five epileptic patients with

temporal lobe epilepsy. The placement of the EEG Electrodes

is shown in Figure 1, which is a modified image of the

inferior transverse view of the brain from Potter [17]. The EEG

recordings consist of 26 standard channels, and the durations

are ranged from 3 to 13 days. The EEG recordings were all

viewed by experts to determine the number of seizure onset,

and the seizure onset starting and ending points. The summary

of the EEG data is shown in Table I.

TABLE I
SUMMARY OF THE EEG DATA

Patient Number of
Electrodes

Duration of
EEG (days)

Number of
Seizures

Seizure Rate
(per hour)

1 26 3.55 7 0.082

2 26 8.85 22 0.104

3 26 13.13 17 0.054

4 26 6.09 23 0.157

5 26 11.53 20 0.061

Total 43.15 89

S u b d u r a l   e l e c t r o d e   s t r i p s   a r e 
p l a c e d   o v e r : 
l e f t   o r b i t o f r o n t a l   ( L O F ) 
r i g h t   o r b i t o f r o n t a l   ( R O F ) 
l e f t   s u b t e m p o r a l   ( L S T ) 
r i g h t   s u b t e m p o r a l   ( R S T )   c o r t e x 

D e p t h   e l e c t r o d e s   a r e   p l a c e d   i n : 
l e f t   t e m p o r a l   d e p t h   ( L T D ) 
r i g h t   t e m p o r a l   d e p t h   ( R T D ) 

Fig. 1. The interior transverse view of the brain and the placement of the
26 EEG electrodes.

B. Data Preprocessing & Feature Extraction
Since EEG signals are highly nonstationary and seemingly

chaotic, there has been an increasing interest in analyzing EEG

signals in the context of chaos theory [20]. Several commonly

used chaotic measures in many recent studies include largest

Lyapunov exponent [9], correlation dimension [23], Hurst

exponent [5] and entropy [18]. Among these EEG measures,

it has been shown that the largest Lyapunov exponent is a

very useful indicator to characterize a chaotic system [24]. In

our previous studies, an estimation algorithm called short-term

largest Lyapunov exponent (STLmax) was used to quantify

EEG dynamics [9]. Along this line of research, we also employ

STLmax to characterize raw EEG data in this study. The

detailed calculation of STLmax as well as parameter selection

can be found in Iasemidis in [7].

C. Adaptive Seizure Prediction Framework
The schematic structure of the proposed adaptive seizure

prediction system is illustrated in Figure 2. A sliding moving

window was applied to read continuous multichannel EEG

data. We set the window size at 10 min and let it move

with a 50% overlap at each step. Two baselines of normal

and pre-seizure states were constructed to classify windowed

EEG epochs using a KNN method. All the baseline samples

and windowed EEG epochs were represented in terms of mul-

tichannel time profile of STLmaxs. According to prediction

feedbacks (correct or not), the two baselines were updated

in a reinforcement learning procedure. The adaptive seizure

prediction system is discussed in detail in the following.

1) Baseline Construction & Initialization: To start our

prediction system, we need to initialize the pre-seizure and

normal baseline samples. The selection of baseline samples

highly depends on the presumed time length of pre-seizure

period, which is often used as prediction horizon in seizure

prediction literature. So far little is known to define pre-seizure

duration, which has been reported between a few minutes and

several hours prior to seizure onsets. The prediction horizon

for epileptic seizures is still an open question in epilepsy

research. In this study, we tried three prediction horizons,

which are 30 min, 90min, and 150min, respectively. If we set

the prediction horizon at H minutes, then the EEG recordings

can be divided into the following three periods:

500



B a s e l i n e   o f   N o r m a l   S t a t e B a s e l i n e   o f   P r e - s e i z u r e   S t a t e 

  M a k e   P r e d i c t i o n   B a s e d   o n   a 
K N N - b a s e d   D e c i s i o n - M a k i n g   P r o c e d u r e 

  P r e d i c t i o n   E v a l u a t i o n   u n t i l   O n e   P r e d i c t i o n   H o r i z o n 
L a t e r   o r   a   S e i z u r e   O n s e t ,   w h i c h e v e r   o c c u r s   f i r s t . 

E E G   F e a t u r e   E x t r a c t i o i n   u s i n g   t h e   E s t i m a t i o n   o f 
S h o r t - T e r m   M a x i m u m   L y a p u n o v   E x p o n e n t   ( S T L m a x )

B a s e l i n e   U p d a t i n g   R u l e   ( F i v e   O p t i o n s ) 
1 .   N o   U p d a t e 

2 .   S c o r e - b a s e d   L o c a l   U p d a t e   o f     B a s e l i n e   S a m p l e s 

M o v i n g   W i n d o w 

  S e i z u r e 
    O n s e t 

H   m i n 

  S e i z u r e 
    O n s e t 

P r e - s e i z u r e 
      P e r i o d 

P o s t - s e i z u r e 
      P e r i o d 

N o r m a l 
  P e r i o d 

H   m i n 

3 .   S c o r e - b a s e d   G l o b a l   U p d a t e   o f     B a s e l i n e   S a m p l e s 

4 .   D i s t a n c e - b a s e d   L o c a l   U p d a t e   o f     B a s e l i n e   S a m p l e s 

5 .   D i s t a n c e - b a s e d   L o c a l   U p d a t e   o f     B a s e l i n e   S a m p l e s 

R e i n f o r c e m e n t   S i g n a l   t o   U p d a t e   B a s e l i n e   S a m p l e s 

  2 0   m i n   2 0   m i n 

Fig. 2. Schematic structure of the adaptive prediction system.

• Pre-seizure period: 0-H min preceding a seizure onset.

• Post-seizure period: 0-20 min after a seizure onset.

• Normal period: between pre- and post-seizure periods.

The initial samples of the two baselines were randomly

chosen from the normal and pre-seizure period preceding the

first seizure onset. The length of the baseline samples is equal

to that of the moving window. Since there is no guideline

available to determine the number of samples in each baseline,

we tentatively stored a fixed number of 50 samples in each

baseline.

2) KNN Prediction Procedure: With baselines for normal

and pre-seizure states, it is intuitive and practical for physi-

cians to decide the class of a windowed EEG epoch based

on its degree of matching between the two baselines. For

this purpose, KNN is the best choice because it classifies a

new unlabeled sample by comparing it with all the samples of

the two baselines. Thus, we employed KNN method to find

the K best matching samples in each of the two baselines

and compare them to make a decision. The KNN prediction

procedure is described in the following.

At first, a KNN method has to use similarity measures to

quantify the closeness between a moving-window EEG and

baseline samples. We employed three frequently used time

series similarity measures. If we denote two time series of

STLmax as X and Y with equal length of n, then the three

types of distances are briefly described as follows.

• Euclidean distance (EU): EDxy =
∑n

p=1(xp − yp)
2/n.

• T-statistical distance (TS): EDxy =
∑n

p=1(xp − yp)
2/n,

where τ
|X−Y |

is the sample standard deviation of the

absolute difference between the time series X and Y .

• Dynamic time warping (DTW): DTW measures similarity

based on the best possible alignment or the minimum

mapping distance between two time series. A detailed

calculation of DTW can be found in [22].

Once a similarity measure is chosen, the distance between

a windowed EEG epoch and a baseline sample, denoted

as window-sample distance, can be obtained. The similarity

measures deal with one dimensional time series at a time, and

a sample-window distance for a multichannel EEG epoch is

calculated as follows:

dpre,i =

M∑
j=1

distance(Sj
pre,i, S

j
mw) (1)

dint,i =

M∑
j=1

distance(Sj
int,i, S

j
mw) (2)

where M=26 is the number of EEG channels. Sj
pre,i and Sj

int,i

is the jth channel of the ith pre-seizure and normal baseline

sample, respectively; Sj
mv,i is the jth channel of the windowed

EEG epoch. dpre,i and dint,i denote the distance between the

windowed EEG epoch and the ith sample in the pre-seizure

and normal baseline, respectively. We call these two distances

as window-sample distances. The term distance in the above

formula represents a time series distance measure, which can

be EU, TS, or DTW in this paper.

Four choices of K were employed, which were three, seven,

half, and all of the baseline samples, respectively. For a

specific value of K , the weighted summation of K nearest

window-sample distances in a baseline was considered as the

distance between the windowed EEG epoch and that baseline.

We call the two distances as window-normal distance and

window-preseizure distance, respectively. For each windowed

EEG epoch, its distances to the two baselines can be calculated

as follows:

DK
pre =

K∑
k=1

αkdpre,k (3)

DK
int =

K∑
k=1

βkdint,k (4)

where DK
pre and DK

int are the window-preseizure distance and

window-normal distance, respectively. dpre,k and dint,k are the

window-sample distances of the kth sample of the K nearest

neighbors in the pre-seizure and normal baseline, respectively.

Once the two baseline-window distances are obtained, the

prediction decision can be made by:

predictor =

{
1, if DK

pre/D
K
int ≤ h (trigger a warning)

0, otherwise (no warning)

where the threshold h = 1 by default.

3) Evaluation of a Prediction Result: If the prediction

horizon is H min, then each prediction outcome can be

categorized into one of the following four subsets:
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• True positive (TP): if predictor = 1 and a seizure occurs

within H minutes after the prediction.

• False positive (FP): if predictor = 1 and no seizure

occurs within H minutes after the prediction.

• True negative (TN): if predictor = 0 and no seizure

occurs within H minutes after the prediction.

• False negative (FN): if predictor = 0 and a seizure

occurs within H minutes after the prediction.

4) Baseline Updating Mechanism: The flowchart of the

baseline update framework from delayed prediction feedback

is shown in Figure 3. In medical practice, a physician usually

compares the EEG patterns from an individual with the

patterns from a database of many other patients and healthy

people. The search of the best matching patterns can be global

within the whole database, and can also be local within a

sub-group of the database. Inspired by this procedure, both

local and global update rules were designed. In particular, we

designed four update rules including score-based local update

(SL), score-based global update (SG), distance-based local

update (DG), and distance-based global update (DG).

C u r r e n t   M o v i n g   W i n d o w 
A n   O l d   M o v i n g   W i n d o w 
W a i t i n g   t o   b e   E v a l u a t e d 

N o   s e i z u r e   o c c u r s   w i t h i n 
P r e d i c t i o n   H o r i z o n . 

I f 

P r e d i c t i o n   E v a l u a t i o n 

> T N N o   B a s e l i n e   U p d a t e 

I f F P U p d a t e   n o r m a l   b a s e l i n e :   r e p l a c e   a   ̀  b a d '   n o r m a l 
b a s e l i n e   s a m p l e   w i t h   t h e   o l d   m o v i n g   w i n d o w   E E G 
a c c o r d i n g   t o   u p d a t e   r u l e s   o f   S L ,   S G ,   D L ,   o r   D G . 

A n   O l d   M o v i n g   W i n d o w 
W a i t i n g   t o   b e   E v a l u a t e d 

T i m e   D u r a t i o n           H   m i n 

I f 

P r e d i c t i o n   E v a l u a t i o n 

< T P N o   B a s e l i n e   U p d a t e 

I f F N 

H   m i n 

C a s e   I I :   A   s e i z u r e   o c c u r s 
w i t h i n   P r e d i c t i o n   H o r i z o n . 

  L o o k - b a c k w a r d   B a s e l i n e   U p a t e   C a s e   I : 
N o   s e i z u r e   o c c u r s   w i t h i n   P r e d i c t i o n   H o r i z o n 

L o o k - b a c k w a r d   B a s e l i n e   U p a t e   C a s e   I I : 
A   s e i z u r e   o c c u r s   w i t h i n   P r e d i c t i o n   H o r i z o n 

U p d a t e   p r e - s e i z u r e   b a s e l i n e :   r e p l a c e   a   ̀  b a d '   p r e 
- s e i z u r e   b a s e l i n e   s a m p l e   w i t h   t h e   o l d   m o v i n g 
w i n d o w   E E G   a c c o r d i n g   t o   t h e   u p d a t e   r u l e s   o f 
S L ,   S G ,   D L ,   o r   D G . 

S e i z u r e 
  O n s e t 

Fig. 3. Flowchart of the adaptive baseline-updating framework.

Score-Based Update: In this case, we assume that different

baseline samples have different power in decision making. The

‘importance’ of a baseline pattern can be represented by a

score associated with that baseline sample. The scores of all

baseline samples were equal at the beginning. The initial score

of each baseline sample is given by:

αi = βi =
1

N
, i = 1, . . . , N (5)

where αi and βi are the scores of the ith sample in the pre-

seizure and normal baseline, respectively. N=50 is the number

of samples in each baseline. Let r ∈ (0, 1) denote the learning

rate to control the update size for the scores, then the score

update rule is represented as follows:

• For cases of TP & FN, the score update rule is:

αi = αi(1−
dpre,i − dpre

dpre
)× r (6)

βi = βi(1 +
dint,i − dint

dint
)× r (7)

• For cases of FP & TN, the score update rule is:

αi = αi(1 +
dpre,i − dpre

dpre
)× r (8)

βi = βi(1−
dint,i − dint

dint
)× r (9)

where ∀i = 1, 2, . . . , N , dpre =
∑N

i=1 dpre,i/N , and dint =∑N
i=1 dint,i/N .

The baseline update rule can be described as follows:

• For case of FP: replace the lowest-scored sample in

its K-nearest neighbors of the normal baseline with the

corresponding moving-window EEG.

• For case of FN: replace the lowest-scored sample in its

K-nearest neighbors of the pre-seizure baseline with the

corresponding moving-window EEG.

• For cases of TP and TN: keep the current baseline

samples unchanged.

When K equals to N , it becomes a global update rule which

replaces the lowest-scored sample in the baseline. And when K

is smaller than N , it is a local update rule which only considers

the local K nearest neighbors of a windowed EEG epoch. The

score-based local and global update rules are denoted as ‘SL’

and ‘SG’, respectively.

Distance-based Update: The distance between two EEG

epochs indicates the degree of similarity match. Intuitively,

a shorter distance means a better match, and a larger distance

indicates a worse match. Correspondingly, the basic idea of

the distance-based update is that, when it comes to replace

one ‘bad’ sample in a baseline after a false prediction, we

choose the baseline sample which has the largest distance to

the windowed epoch. We consider this sample has the worst

match with the windowed epoch, and thus may be the major

cause of the false prediction. In summary, the baseline update

rule can be described as follows:

• For case of FP: replace the furthest sample in its K-

nearest neighbors of the normal baseline with the cor-

responding windowed EEG epoch.

• For case of FN: replace the furthest sample in its K-

nearest neighbors of the pre-seizure baseline with the

corresponding windowed EEG epoch.

• For cases of TP and TN: keep the current baseline

samples unchanged.
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Similar to ‘SL’ and ‘SG’, the distance-based update can

also be local and global depending on the value of K . The

distance-based local and global update rules are denoted as

‘DL’ and ‘DG’, respectively.

D. Evaluation of Prediction Performance
Time Block-Based Sensitivity and Specificity: We label the

continuous EEG by a series of time blocks. The block length

is equal to the length of prediction horizon (H min). In

particular, the pre-seizure periods were defined as pre-seizure

time blocks. The normal period between two seizures were

divided into a number equal-sized normal time blocks with a

length of H min. The prediction outcome of each time block

can be categorized into one of the following four subsets:

• TPblk: at least one warning in a pre-seizure time block.

• TNblk: no warning within a normal time block.

• FPblk: at least one warning in a normal time block.

• FNblk: no warning within a pre-seizure time block.

Then the time block-based sensitivity and specificity are

defined as follows:

senblk =
TPblk

TPblk + FNblk
(10)

speblk =
TNblk

FPblk + TNblk
(11)

The time block-based sensitivity and specificity are more

suitable to evaluate prediction performance than the traditional

definition of sensitivity and specificity, since they consider the

effects of prediction horizon for online seizure prediction.

Receiver Operating Characteristic (ROC) Analysis: Based on

sensitivity and specificity, a common method in comparing the

prediction performance of a model is to use the ROC curve.

The ROC curve is a plot of sensitivity versus false alarm rate

(1-specificity) as the discrimination setting of a classifier is

varied. The ROC curve for a perfect prediction model is the

line connecting [0, 0] to [0, 1] and [0, 1] to [1, 1]. And the

diagonal line connecting [0, 0] to [1, 1] is the ROC curve

corresponding to a random model. Generally, a ROC curve

lies between these two extreme lines. The area under the
ROC curve (AUC) is often used as an important metric to

evaluate a prediction model. The AUC is an overall summary

of prediction accuracy across the spectrum of its decision-

making values. AUC values are usually between 0.5 and 1.

The AUC of a perfect predictor is 1 while a purely random

chance model has an AUC of 0.5 on average. The higher the

AUC value is to one, the better prediction power it indicates.

III. RESULTS

A. Prediction Performance based on senblk and speblk

Table II summarizes the senblk and speblk of the adaptive

prediction system with the best parameter settings. The results

show that the senblk was ranged from 57.89% (Patient 5,

30 min) to 100.00% (Patient 1, 30 min), and the speblk was

ranged from 43.38% (Patient 1, 90 min) to 91.76% (Patient 1,

150 min). The best averaged accuracy was achieved at the

rates of 74.36% using the prediction horizon of 150 min.

The averaged accuracy over the three prediction horizons was

71.34%.
TABLE II

THE SUMMARY OF senblk AND speblk OBTAINED BY THE ADAPTIVE

LEARNING PREDICTOR WITH THE BEST PARAMETER SETTINGS.

Horizon 30 min 90 min 150 min

Patient sen. spe. setting sen. spe. setting sen. spe. setting

1 100.00% 46.83% half-DTW-SL 100.00% 43.38% 3-TS-DL 83.33% 91.76% all-EU-DL

2 66.67% 72.30% 3-TS-DL 66.67% 63.93% half-EU-DG 66.67% 84.46% 7-EU-SL

3 87.50% 63.54% 3-EU-SL 62.50% 72.53% 7-EU-SG 87.50% 55.55% 3-DTW-SL

4 64.71% 77.32% all-EU-DG 88.24% 74.61% half-EU-DG 76.47% 83.00% 7-EU-DL

5 57.89% 60.06% 7-TS-DL 73.68% 54.48% half-DTW-DG 57.89% 57.00% 3-DTW-DL

Ave. 75.35% 64.01% - 78.22% 61.79% - 74.37% 74.35% -

Acc. 69.68% - 70.00% - 74.36% -

In a contrast experiment, we also tested a Poisson predictor,

which randomly raised a warning with a mean interval of λ
minutes. The performances using different values of λ were

similar in terms of time-block-based sensitivity/specificity.

As an example, the performance of the Poisson predictor

with λ=60 is shown in Table III. One can see clearly that

the adaptive learning predictor achieved a considerable better

prediction performance than the Poisson random predictor.

The adaptive scheme with best parameter settings achieved

an overall averaged accuracy around 70%, while the random

predictor had an overall accuracy around 50%.

TABLE III
THE SUMMARY OF senblk AND speblk OBTAINED FROM A POISSON

RANDOM PREDICTOR WITH A MEAN INTERVAL OF 1 HOUR.

Prediction Horizon 30 min 90 min 150 min

Patient sen. spe. sen. spe. sen. spe.

1 52.00% 39.00% 100.00% 2.10% 100.00% 0.44%

2 58.67% 39.33% 98.67% 0.53% 97.33% 0.55%

3 51.00% 40.63% 99.00% 1.38% 100.00% 0.89%

4 48.47% 40.39% 92.47% 1.47% 94.12% 0.56%

5 54.11% 40.24% 99.79% 0.99% 100.00% 0.30%

Ave. 52.85% 39.92% 97.99% 1.29% 98.29% 0.55%

Accuracy 46.38% 49.64% 49.42%

B. Receiver Operating Characteristic Analysis
The above analysis discusses the prediction results of the

best parameter settings for each patient. In this subsection, we

employ ROC analysis to further investigate the effectiveness

of the proposed adaptive schemes for all parameter settings.

The averaged AUC value over the five patients was calculated

for each parameter setting. Figure 4 plots the averaged AUC

values for each of the five update schemes (None, SL, SG, DL,

and DG) across all the 36 parameter settings (4 choices of K
× 3 distance measures × 3 prediction horizons). It is clear

to observe that the AUC values of the four adaptive updating

schemes are generally larger than those of the nonadaptive

scheme. Compared with the nonadaptive scheme, 27, 29, 36,

and 36 parameter settings of the adaptive schemes SL, SG,

DL, and DG increased the AUC values of the prediction

system. In other word, most of the parameter choices of

the adaptive schemes SL, SG, DL, DG have demonstrated

their effectiveness in improving the prediction power of the

system. We also notice that the AUC values of the local

update schemes (SL and DL) were lower than those of the

global schemes (SL and SG), on average. The global update

schemes did a better job than the local update schemes. This

may indicate that the EEG patterns within each baseline were

likely to be a homogeneous group. This is reasonable to our

503



anticipation, since we only have limited available EEG data.

The number of seizures per patient was only ranged from 7 to

23. The limited number of seizures may not be enough to train

a reinforcement learner to establish distinct pattern sub-groups

in each baseline if they do exist.
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Fig. 4. The averaged AUC values over the five patients for all the 180
parameter settings (5 update schemes × 36 parameter settings per scheme).
Particularly, the upper plot compares the nonadaptive scheme with the score-
based local/global update schemes; the lower plot compares the nonadaptive
scheme with the distance-based local/global update schemes.

IV. CONCLUSIONS

In this work, we propose a novel seizure prediction frame-

work, which combines reinforcement learning, online monitor-

ing and adaptive control theory to advance the adaptability of

the system. By means of the EEG recordings from five patients

with epilepsy, we demonstrated that the adaptive learning

framework did improve the prediction performance of the

prediction system. The outcomes of this study are encouraging

considering that the current seizure prediction techniques are

still in their early stage trying to work better than a chance

level. The prediction scheme with adaptive learning ability is

promising to function well for a wide range of patients. It

has a great potential to handle a great variety of pre-seizure

brainwave patterns. The long-term goal of this research is

to design intelligent machine-learning interfaces that could

adaptively predict abnormal mental states for patients with

brain diseases. This prediction system could eventually take

the form of an implanted ‘brain pacemaker’, stimulating the

brain to prevent an abnormal brain state from happening in its

very early stage.
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C. Elger, K. Lehnertz, and P. Grassberger. Measure profile surrogates:
A method to validate the performance of epileptic seizure prediction
algorithms. Physical Review E, 69(6):061915, 2004.

[12] K. Lehnertz and C. Elger. Can epileptic seizures be predicted? evidence
from nonlinear time series analysis of brain electrical activity. Physics
Review Letters, 80:5019–5022, 1998.

[13] K. Lehnertz and B. Litt. The first international collaborative workshop
on seizure prediction: summary and data description. Clinical Neuro-
physiology, 116(3):493–505, 2005.

[14] F. Mormann, R. Andrzejak, C. Elger, and K. Lehnertz. Seizure
prediction: The long and winding road. Brain, 130(2):314–333, 2007.

[15] F. Mormann, T. Kreuz, C. Rieke, R. Andrzejak, A. Kraskov, P. David,
C. Elger, and K. Lehnertz. On the predictability of epileptic seizures.
Journal of Clinical Neurophysiology, 116(3):569–587, 2006.

[16] H. Persson, K. Alberts, B. Farahmand, and T. Tomson. Risk of extremity
fractures in adult outpatients with epilepsy. Epilepsia, 43(7):768–772,
2002.

[17] H. Potter. Anatomy of the brain. http://faculty.ucc.edu/biology-
potter/TheBrain/, 2006.

[18] R. Quiroga, J. Arnhold, K. Lehnertz, and P. Grassberger. Kulback-leibler
and renormalized entropies: applications to electroencephalograms of
epilepsy patients. Physical review. E, Statistical physics, plasmas, fluids,
and related interdisciplinary topics, 62:8380–8386, 2000.

[19] M. L. V. Quyen, V. Navarro, M. Baulac, B. Renault, and J. Martinerie.
Anticipation of epileptic seizures from standard EEG recordings. The
Lancet, 361(9361):970–971, 2003.

[20] P. Rapp, T. Bashore, J. Martinerie, A. Albano, I. Zimmerman, and
A. Mess. Dynamics of brain electrical activity. Brain Topography,
2:99–118, 1989.

[21] J. Sackellares, D. Shiau, J. Principe, M. Yang, L. Dance, W. Suharitdam-
rong, W. Chaovalitwongse, P. Pardalos, and L. Iasemidis. Predictibility
analysis for an automated seizure prediction algorithm. Journal of
Clinical Neurophysiology, 23(6):509–520, 2006.

[22] P. Senin. Dynamic time warping algorithm review. Technical report,
Information and Computer Science Departament University of Hawaii,
Honolulu, 2008.

[23] C. Silva, I. Pimentel, A. Andrade, J. Foreid, and E. Ducla-Soares.
Correlation dimension maps of EEG from epileptic absences. Brain
Topography, 11:201–209, 1999.

[24] J. Vastano and E. Kostelich. Comparison of algorithms for determining
Lyapunov exponents from experimental data. In International conference
on dimensions and entropies in chaotic systems, pages 100–107, Pecos
River, NM, USA, 1985.

[25] S. Viglione and G. Walsh. Epileptic seizure prediction. Electroen-
cephalography and Clinical Neurophysiology, 39:435–436, 1975.

[26] L. Wang and X. Fu. Data Mining with Computational Intelligence.
Springer, Berlin Heidelberg, NY, 2005.

[27] M. Winterhalder, T. Maiwald, H. Voss, R. Aschenbrenner-Scheibe,
J. Timmer, and A. Schulze-Bonhage. The seizure prediction charac-
teristic: a general framework to assess and compare seizure prediction
methods. Epilepsy & Behavior, 4(3):318–325, 2003.

504


