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Abstract— EEG serves as an essential tool for brain source
localization due to its high temporal resolution. However, in-
ference of brain activities from the EEG data is in general a
challenging ill-posed inverse problem. To better retrieve task
related discriminative source patches from strong spontaneous
background signals, we propose a novel EEG source imaging
model based on spatial and temporal graph structures. In
particular, graph fractional-order total variation (gFOTV) is
used to enhance spatial smoothness, and the label information
of brain state is enclosed in a temporal graph regularization
term to guarantee intra-class consistency of estimated sources.
The proposed model is efficiently solved by the alternating
direction method of multipliers (ADMM). A two-stage algorithm
is proposed as well to further improve the result. Numerical
experiments have shown that our method localize source extents
more effectively than the benchmark methods.

Keywords— EEG Source Imaging, Graph Fractional-Order
Total Variation, Graph Regularization, Alternating Direction
Method of Multiplier (ADMM).

I. INTRODUCTION

Electroencephalography (EEG) is a non-invasive brain
imaging technique that records the electric field on the scalp
generated by the synchronous activation of neuronal popula-
tions. It has been previously estimated that if as few as one
in a thousand synapses become activated simultaneously in a
region of about 40 square millimeters of cortex, the generated
signal can be detected and recorded by EEG electrodes [1].
Compared to other functional neuroimaging techniques such
as functional magnetic resonance imaging (fMRI) and positron
emission tomography (PET), EEG is able to directly measure
real-time electrical neural activities, and therefore EEG can
identify exactly when different brain regions are involved
during different processing [2]. By contrast, PET and fMRI
infer brain activities by detecting associated metabolic or
cerebrovascular changes which are slow and time-delayed [1],
[3]. Besides, due to its easy portability, low cost and high
temporal resolution, EEG has been a leading clinical tool for
detecting and diagnosing brain disorders and diseases.

Reconstruction of activated brain sources from the recorded
EEG data is known as the EEG inverse problem or source
imaging/localization, which is highly ill-posed without a
unique solution since the number of dipoles (in thousands) is
much higher than that of electrodes (in hundreds). Based on
different assumptions about source configurations, a variety
of methods have been proposed to address this challenging

problem particularly with various regularization techniques.
One of the pioneering work is the `2-norm based minimum
norm estimate (MNE) inverse solver [4]. By replacing `2-norm
by `1-norm, minimum current estimate (MCE) [5] is proposed
to overcome overestimation of active area sizes incurred by
`2-norm. Pascual-Marqui et al. proposed standardized low-
resolution brain electromagnetic tomography (sLORETA) [6]
that enforces spatial smoothness of the neighboring sources
and normalizes the solution with respect to the estimated
noise level. It has been found that source extents can be
well estimated by enforcing sparsity in a transformed do-
main, e.g., total variation (TV) regularization [7], [8] More
recently, variants of TV based regularization techniques have
been proposed to enhance higher order spatial smoothness,
including the second-order total generalized variation based s-
SMOOTH [7], and the graph fractional-order TV based EEG
source localization method [9], [10].

On the other hand, considering spatial sparsity and temporal
smoothness, a number of regularization techniques based on
spatiotemporal mixed norms have been developed, includ-
ing Mixed Norm Estimates (MxNE) which uses `1,2-norm
regularization [11], and time-frequency mixed-norm estimate
(TF-MxNE) which uses structured sparse priors in time-
frequency domain for better estimation of the non-stationary
and transient source signal [12]. In fact, discriminative task-
related brain activation sources are more important and use-
ful for clinical practice. According to our recent work on
discovering discriminative source activations [13]–[15], EEG
label information of brain state such as happiness, sadness and
calmness could be incorporated into the EEG inverse problem
solvers in a mutually beneficial manner. In this paper, we
propose a novel EEG source imaging model based on spatial-
temporal graph structures by exploiting label information of
brain state. In particular, the graph fractional-order TV is used
for preserving high-order spatial smoothness and the temporal
graph regularization promotes intra-class consistency. The
proposed model is solved by a two-stage algorithm based on
the alternating direction method of multipliers (ADMM) and
geolocation-based solution expansion, which avoids the risk of
getting stuck in undesirable suboptimal solutions. Numerical
experiments are conducted to verify the effectiveness of the
proposed work on discovering discriminative source extents.

The rest of the paper is organized as follows. Section



II introduces the EEG inverse problem. Section III reviews
the spatial graph fractional-order TV and the temporal graph
regularization. Section IV describes the proposed approach
together with its numerical algorithm in detail. Section V
evaluates the proposed work numerically. A brief conclusion
is drawn in Section VI.

II. INVERSE PROBLEM

EEG data are mostly generated by pyramidal cells in the
gray matter with an orientation perpendicular to the cortex.
It is well-established that the orientation of a brain source
is perpendicular to the cortex surface. Assume that there
are N EEG electrodes on the scalp for measuring T time
samples. Consider a cortex with D triangles or dipoles. Let
L ∈ RN×D be the lead field matrix that describes the
superposition of linear mappings from the cortex sources to
the EEG recording sensors, each column of which represents
the electrical potential mapping pattern of a cortex dipole to
the EEG electrodes. In the noise-free case, the forward model
can be expressed as

X = LS, (1)

where X ∈ RN×T is the EEG measurements. Here S ∈ RD×T
represents the electrical potentials in D source locations for
all the T time points that is transmitted to the scalp surface.
Since L has much more columns than rows, the inverse
problem that retrieving S from X becomes highly ill-posed.
In order to find a unique solution, we resort to a regularization
technique by introducing prior information of the solution.
More specifically, S can be obtained by solving the following
minimization problem

min
S
‖X − LS‖2F + λR(S), (2)

where ‖·‖F is the Frobenius norm of a matrix. The first term
of (2) is called data fidelity which accounts for the prediction
error, and the second term is called regularization term which
usually corresponds to certain characteristics of the solution,
e.g., the sparsity by itself or in some transformed domain.
Selection of the regularization term plays a key role in the
source imaging and discriminative source patch classification.
To improve the localization accuracy, R(S) is chosen to
encourage spatially smooth source configurations and enforce
neurophysiologically plausible solutions.

III. SPATIAL AND TEMPORAL GRAPH REGULARIZATIONS

In this section, we briefly review the spatial graph fractional-
order TV, and the temporal graph regularization involving the
label information of different brain states.

A. Spatial Graph Fractional-Order Total Variation

In pursuit of improving spatial smoothness of source ex-
tents, we design a spatial regularization term based on our
recent work on graph fractional-order TV [9]. To reduce
staircase artifacts of TV, fractional-order TV (also known as
total fractional-order variation) has been proposed and widely

applied in the image processing community to improve im-
age smoothness by considering more neighboring information
[16]–[18]. It is known that the anisotropic fractional-order TV
of an image u defined on a 2D rectangular mesh has the
following form

TVα(u) = ‖∇αu‖1 =

M∑
i,j=1

(
|(Dα

xu)i,j |+ |(Dα
y u)i,j |

)
,

where α ∈ (1, 2). Here the fractional derivative is based on
the Grüwald-Letnikov derivative definition [19]

(Dα
xu)i,j =

K∑
k=0

wα(k)u(i− k, j),

(Dα
y u)i,j =

K∑
k=0

wα(k)u(i, j − k),

where the coefficients are wα(k) = (−1)k Γ(α+1)
k!Γ(α−k+1) . Based

on this definition, TVα becomes the traditional TV when
α = 1. Although valid for (0, 1) ∪ (2,∞), the parameter α is
typically set between 1 and 2 to achieve the best performance
in practice [17].

Using a triangle mesh, the discretized cortex surface can be
treated as a graph with voxel or dipole as graph node. For a
specific node vi, let d(vi, vj) be the number of nodes on the
shortest path connecting the nodes vi and vj , which is in or
close to a geodesic of the underlying cortex surface passing
through vi and vj . Given a path p = (vi=m0

, vm1
, . . . , vmK

)
where the shortest distance between vm0

and vmj
is j nodes,

the fractional-order derivative along the path p is defined as

(Dα
p u)i := Dα

p u(vi) =

K∑
j=0

wα(j)u(vmj ).

The discretized fractional-order TV of u is defined as [9]:

TVα(u) = ‖Dαu‖1 =

M∑
i=1

∑
p∈P(i;K)

|(Dα
p u)i|,

where P(i;K) is the set of all paths starting from the i-th node
with length of K nodes. Here we use the breadth-first search
(BFS) algorithm to first compute the shortest path between
each node pair to get a pairwise distance matrix, and then
create the matrix Dα ∈ RNp×D by seeking all Np paths of
length K nodes and recording all nodes on each path. For
a specific node vi, the nodes at level k, i.e., the nodes have
shortest distance k from vi, are assigned the weight wα(k).
Note that K specifies the maximal level of nodes to be used.
By the assumption that u has a sparse spatial structure, it is
sufficient to use K ≤ 4 levels of neighboring nodes to achieve
the desired accuracy in our experiments.

B. Temporal Graph Regularization

Inspired by discovering image discriminators using graph
regularization in computer vision [20], we design a tempo-
ral regularization to penalize intra-class in-consistency. More



specifically, the common sources are first decomposed using
the Voting Orthogonal Matching Pursuit (VOMP) algorithm
[13]. Define a binary matrix M as follows

Mij =

{
1, if (si,sj) belong to the same class;
0, otherwise.

It is obvious that M contains the label information of different
brain state. Now define a temporal graph regularization as

Rt(S) =

N∑
i,j=1

‖si − sj‖22Mij ,

where si is the i-th column of the matrix S. This formulation
intends to find discriminative sources by decomposing the
common source while preserving consistency of reconstructed
sources in the same class. By defining D as a diagonal matrix
whose diagonal entries are row sums of the symmetric matrix
M , i.e., Dii =

∑
jMij , and denoting G = D −M , Rt(S)

can be rewritten as:

Rt(S) =

N∑
i,j=1

(si
T si + sj

T sj − 2si
T sj)Mij = 2 tr(SGST ),

(3)
where tr(·) is the trace operator of a matrix, i.e., adding up
all diagonal entries of a matrix.

IV. PROPOSED EEG SOURCE IMAGING APPROACH

In this section, we present our proposed approach which
utilizes the temporal and spatial graph structures of the EEG
data to help recognize extended source patches on the cortex
and enhance spatial smoothness of source extents. A numer-
ical algorithm is derived by applying the ADMM and an
enhanced version based on the derived algorithm called Two-
stage Geolocation-based Solution Expansion ADMM (TGSE-
ADMM) is proposed.

A. Proposed EEG Source Imaging Model

There has been a large number of work devoted to develop-
ing EEG source localization methods by using various regu-
larization techniques, such as Variation-Based Sparse Cortical
Current Density (VB-SCCD) [8] which is essentially the TV,
In [21], Zhu et al. proposed to use multiple priors including
variation-based and wavelet-based constraints. However, based
on the assumption that the underlying signal is piecewise
constant, TV can easily cause staircase artifacts. To preserve
high-order spatial smoothness of the EEG signal defined on
the cortex, we use the graph fractional-order total variation
described in Section III-A. On the other hand, previous studies
[22], [23] indicated that the brain spontaneous sources con-
tribute most part of the EEG signal. The neurons in our brain
still fires even when the subjects are in closed-eye resting state.

By combining the spatial and temporal graph regularizations
described in Section III, we propose the following model for

EEG discriminative source imaging

min
S
E(S) +Rs(S) +Rt(S)

=min
S

1

2
‖X − LS‖2F + λ‖DαS‖1,1 +

β

2

N∑
i,j=1

‖si − sj‖22Mi,j

(4)
where β, λ > 0 are tuning parameters and ‖DαS‖1,1 =∑T
i=1‖Dαsi‖1. Note that an important assumption in EEG

source imaging is the prior to guarantee spatiotemporal
smoothness in the source solution [11], [24]–[27]. Our pro-
posed model is able to enforce high order spatial smoothness
via graph fractional-order TV plus temporal smoothness via
temporal graph regularization involving label information of
brain state.

B. Proposed Algorithms

To simplify discussion, we first replace the temporal regu-
larization term by (3) and rewrite (4) as follows

min
S

1

2
‖X − LS‖2F + λ‖DαS‖1,1 + β(tr(SGST )). (5)

By change of variables, (5) can be rewritten as

min
S,Y

1

2
‖X − LS‖2F + λ‖Y ‖1,1 + β(tr(SGST )) s.t. Y = DαS.

(6)
The new formulation makes the objective function separable
with respect to the two variables S and Y . Furthermore, by
denoting the i-th column of X and Y by xi and yi respectively,
we obtain a column-wise form of (6)

min
si,yi

1

2
‖xi − Lsi‖22 + λ‖yi‖1 + βGiis

T
i si + sT

i
hi s.t. yi = Dαsi,

(7)
where hi = 2β(

∑
j 6=iGijsj) and Gij is the (i, j)-th entry of

the matrix G.
ADMM is an efficient method to solve convex and even

non-convex problems by decomposing the original problem
into several subproblems such that each subproblem has a
closed form solution or can be computed efficiently [28]. To
apply the ADMM to solve (7), we first construct the following
augmented Lagrangian function

L(si, yi,ui) =
1

2
‖xi − Lsi‖22 + λ ‖yi‖1 + βGiis

T
i si

+ sTi hi + uTi (Dαsi − yi) +
ρ

2
‖Dαsi − yi‖22

(8)

Then ADMM results in the following two subproblems for
updating si, yi:

s
(k+1)
i = argmin

s
L(s, y(k)

i , u
(k)
i ),

y
(k+1)
i = argmin

y
L(s(k+1)

i , y, u
(k)
i ).



Algorithm 1 Source Imaging Based on Spatial and Temporal
Graph Structures

INPUT: Lead field matrix L, preprocessed EEG signal
matrix X , graph matrix G, precalculated matrix Dα, pa-
rameters β, λ > 0, Homotopy solution S0, and κ > 0.
OUTPUT: Source matrix S.
Initialize: Set S(0) = S0, y

(0)
i = V S0 and u(0)

i = κ× 1.
for t = 1, . . . , Tmax do

for i = 1, . . . , N do
while si is not converged do

s
(k+1)
i = P−1[LTxi − hi + ρDT

α (y
(k)
i − u

(k)
i /ρ)],

y
(k+1)
i = shrink(Dαs

(k+1)
i + u

(k)
i /ρ, λ/ρ),

u
(k+1)
i = u

(k)
i + ρ(Dαs

(k+1)
i − y(k+1)

i )

end while
end for
update St, Yt

end for

The s-subproblem has a least-squares solution

s
(k+1)
i = argmin

s

1

2
‖xi − Ls‖22 + βGiis

T s+ sThi

+
ρ

2
‖Dαs− y(k)

i + u
(k)
i /ρ‖22

= P−1[LTxi − hi + ρDT
α (y

(k)
i − u

(k)
i /ρ)],

where P = LTL + 2βGiiI + ρDT
αDα. The y-subproblem

essentially finds the proximal operator of the `1-norm, which
has a closed form

y
(k+1)
i = shrink(Dαs

(k+1)
i + u

(k)
i /ρ, λ/ρ), (9)

where the shrinkage function shrink(·, ·) is defined by

shrink(v, µ) = (|v| − µ)+ sgn (v) ,

where (x)+ is x when x > 0, otherwise 0. Here sgn(·) is the
componentwise sign function. The algorithm based on ADMM
for solving (4) is summarized in Algorithm 1.

Despite its effectiveness, Algorithm 1 is sensitive to the
initialization and returns undesirable solutions numerically-
either too sparse using the `1-regularized solution as initial
guess or too diffuse using 0 as initial guess. To address this
issue, we propose a two-stage algorithm based on ADMM
and Geolocation-based Solution Expansion (GSE), termed as
Algorithm 2, which is empirically shown to be effective in
reconstructing large source extents. At the first stage, we run
Algorithm 1 with a small graph parameter β to reduce the
impact of misleading (initial) solutions from samples of the
same class. Here the solution from the homotopy algorithm
[29] is set as the initial guess of S. Although Algorithm 1
locates the most desirable source patches and deactivates the
wrongly activated sources, the result is prone to have either
narrow or flat source extents. To further correct source extents,
we perform GSE, i.e., triggering the neighboring sources of

Initialization with L1 
regularized result

Algorithm 1

update s

Stage I:   Algorithm 1 with 
small graph parameter

solution expansion and 
shrinkage 

update y and u

update s

Stage II:   Algorithm 1 with 
large graph parameter

update y

update u

Algorithm 1

Fig. 1. Pipeline of Algorithm 2

`1 inferred activated sources to give an overestimation at the
first few iterations, followed with expanding the solution by
finding a large patch of the source extent. An illustration of the
effect of GSE is given in Fig.2. Then the second stage runs
Algorithm 1 with a larger β, which corrects the first stage
result by eliminating spurious activated sources. Both stages
use Algorithm 1 but with different temporal graph parameters
and different initial guesses of S.

Fig. 2. Illustration of using GSE to expand sparse discrete solution and
produce an over-estimated solution. GSE is done by assigning neighbor voxels
the same value as the inferred activated sources.

V. NUMERICAL EXPERIMENT

A realistic head model called “New York Head” [30] is used
in our numerical experiment. The lead field matrix is a linear
mapping from 2004 sources to 108 electrodes. We use two
focal source extents to represent the spontaneous activation
pattern shared by different classes and discriminative task-
related pattern corresponding to one brain state. To mimic the
real world source propagation pattern, one focal source extent
is generated with a center source location and neighboring
sources with spatial standard deviation along the cortical
manifold with σ = 20 mm. The magnitude of spontaneous
center source is 0.8 and the magnitude of task-related center
source is 0.5. Both source extents have 15 activated sources
by setting other smaller sources to be 0. We also assign
10 randomly selected source with magnitude of 0.35 with
variance to be 0.05 to represent spurious sources for each
sample. The maximum iteration is set 50 for updating si at
each stage. We set β = 10−5 for the first stage and β = 0.1



for the second stage. The spatial graph parameter λ is set 10−4

to make the data fitting term and the spatial regularization in
the same scale. For the GSE operation, we choose 15 sources
with largest magnitude, and then assign 5 nearest neighbor
sources of them to have the same magnitude starting from
the minimum to the largest magnitude of these 15 sources.
Fig.2 illustrates the effect under the aforementioned setting.
The ground truth source activation and reconstructed sources
images as well as a brief discussion by different algorithms
are summarized in Fig.3. In Fig.3, the superiority of the
proposed two-stage algorithm over sLORETA, MCE, one-
stage Algorithm 1 is clearly demonstrated for reconstructing
source extents.

For quantitative comparison, we use several metrics in-
cluding the data fitting r2, the spatial regularization term
Rs defined in (4) to measure the spatial smoothness,
predicted source precision P= TP/(TP+FP) and sensitivity
S=TP/(TP+FN), where TP, FN, FP represents true positive,
false negative and false positive respectively. Note that if
the predicted source extent has no overlap with the true
source extent, both precision and sensitivity is 0. Here Pc
and Sc represent precision and sensitivity for the common
source, respectively, and Pd and Sd are defined similarly
for the discriminative source. We use threshold values 0.35
and 0.25 when calculating sensitivity and accuracy for the
common and the discriminative sources for Homotopy, one-
stage Algorithm 1 and two-stage Algorithm 2. We also use
the mean absolute error (MAE) to measure the discrepancy
between the reconstructed source and the ground truth. Ta-
ble 1 summarizes the performance of our proposed algorithm
and benchmark algorithms. Since Homotopy and one-stage
Algorithm 1 without the GSE operation yield very sparse
solutions, their precision is high but with very low sensitivity.
sLORETA has higher sensitivity accuracy than precision due
to its diffusiveness. Our proposed method achieves a better
balance of precision and sensitivity. Despite of its capability to
better explain the data and a smaller spatial regularization term
than the proposed result, the result by one-stage Algorithm 1
is very focalized with narrow source extent. The proposed
Algorithm 2 corrects the source extent and provides a more
useful result in practice.

Table 1. Performance Comparison
Algorithm r2 Rs Pc Sc Pd Sd MAE
sLORETA 0.503 487.7 0.27 0.33 0.14 0.7 84.9
Homotopy 1.000 244.5 0.70 0.19 0.72 0.23 20.0
Algorithm 1 0.979 209.5 0.64 0.20 0.62 0.23 18.6
Algorithm 2 0.976 229.2 0.77 0.54 0.82 0.93 16.8

VI. CONCLUSION

It is a challenging problem to locate the extended source
patches due to the high coherence of lead field matrix. In this
work, we propose a novel EEG source imaging model using
the spatial graph fractional-order TV and the temporal graph
regularization involving label information of brain state. The
model is solved efficiently by an ADMM-based algorithm.
To further correct source extents, a two-stage algorithm is

proposed to combine geolocation-based solution expansion.
Numerical experiments have demonstrated that the proposed
method can preserve high-order spatial smoothness and intra-
class consistency, which shows the great potential to achieve
high resolution EEG source localization for real-time non-
invasive brain imaging research.
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