Instructor: Dr. Mark Ricard
E-Mail: ricard@uta.edu
Office Location: MAC 230
Office Phone: (817) 272-0764
Biomechanics Lab Phone: (817) 272-9185

Course Website: elearn.uta.edu
Office Hours: By Appointment
Location & Time: MAC 223, Wednesday 5:00 – 9:50 PM

Course Description: Application of Newtonian mechanics to human movement analysis. Biomechanical models using three-dimensional video and force plate data will be used to analyze human movement.

Objectives of the Course:
The student should be able to:
1. Demonstrate knowledge of research techniques in force plate analysis by collecting, analyzing and writing a paper on force plate data collection and answering questions pertaining to force plate techniques on a written exam.
2. Demonstrate knowledge of research techniques in video analysis by collecting, analyzing and writing a paper on video data collection and answering questions pertaining to video techniques on a written exam.
3. Demonstrate knowledge of research techniques in isokinetic force analysis by collecting, analyzing and writing a paper on isokinetic force data collection and answering questions pertaining to isokinetic force techniques on a written exam.
4. Demonstrate knowledge of inverse dynamics by computing joint reaction forces and muscle moments.
5. Demonstrate knowledge of research techniques in EMG force and EMG fatigue relationships by collecting, analyzing and writing a paper on EMG force/fatigue.

Course Content:
Selected Readings on the following topics:
Smoothing and filtering of biomechanical data
Ground reaction forces in running
Vertical jump ground reaction forces
Postural Control using force plate
Electromyographic data collection and analysis
Video data collection methods
Isokinetic data collection and analysis
Power and work dynamometers
Use of goniometers, accelerometers and force transducers

Grading:

Grades in this course will be based on the following percentages:

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework</td>
<td>20%</td>
</tr>
<tr>
<td>Midterm</td>
<td>40%</td>
</tr>
<tr>
<td>Research Presentation</td>
<td>10%</td>
</tr>
<tr>
<td>Research Paper</td>
<td>30%</td>
</tr>
<tr>
<td>Date</td>
<td>Task</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
</tr>
</tbody>
</table>
| 1-15 | Analog – Digital Conversion
Laboratory Device Introduction
Collect Pezzack similar data.
Create a Matlab function to compute derivatives and plot position, velocity & acceleration. |
| 1-22 | Chapter 1
Wood, and Pezzack PDFs
Analyze position, velocity & acceleration of our Pezzack data.
Cavanagh: Ground reaction forces
Munro: Ground reaction force
Wood Smoothing & Filtering
Pezzack Data |
| 1-29 | Read Chapter 3, Anthropometrics
Read pages 92 – 102, Cavanagh PDF, Munro PDF
Introduction to Force Plate Methods
AMTI Force Plate |
| 2-5 | Read Chapter 5
Link Segment Model Introduction
2D Video Data Collection Techniques: Capture Volume & Camera Calibration.
Vertical Jump Data Collection in 2D |
| 2-12 | Chapter 5
Link Segment Model II
Interpretation of Joint Moments
Link Segment and Biodex Torque |
| 2-19 | Chapter 2 and 7
3D Video Data Collection Techniques: Model Selection & Marker Tracking |
| 2-26 | Chapter 2 and 7
3D Video Data Collection Techniques: Model Selection & Marker Tracking |
| 3-5 | Data Analysis using Visual 3D |
| 3-9 to 3-15 | SPRING BREAK |
| 3-19 | Read Chapter 8
EMG Methods Deluca, Merletti
EMG – Force/Fatigue Relationships |
| 3-26 | Biodex Data Collection & Analysis, Read p 104-108
Torque-Angular Velocity (Force – Velocity)
Torque – Angle (Force – Length) |
| 4-2 | Mid Term Exam |
| 4-9 | Research Project Data Collection |
| 4-16 | Research Project Data Collection |
| 4-23 | Research Project Data Analysis |
| 4-30 | Research Presentations |
| 5-3 | Research Paper Due |
Selected Readings

