The University of Texas at Arlington

Materials Science and Engineering Department and Mechanical and Aerospace Engineering

MSE 5312/ MAE 4336

Sp. 2015

Mechanical Behavior of Materials/ Advanced Mechanical Behavior of Materials

Instructor:	Professor Choong-Un Kim Office: 302 ELB Telephone: (817) 272-5497 E-Mail: <i>choongun@uta.edu</i> Office Hours: Tu and Th 1:00 – 3:00 pm or by appointment
Teaching Asst:	TBA (Will have office hours that will be announced in class)
Lecture Meetings:	T, Th 2:00 - 3:20 pm (SH 205)
Course Content:	 Mechanics of Materials (stress-strain and stress tensor) Dislocation Theory Single Crystal Deformation Strengthening Mechanisms Fracture Mechanics Fatigue of Materials Creep of Materials

Student Learning Outcomes:

- 1) Basic Principles of Strength of Materials, Constitutive Equations, Plasticity
- 2) Origin, the characterization, and mechanics of defects.
- 3) Basic Principles of Deformation of Solid Crystals.
- 4) Mechanism of Creep and Creep Deformation.
- 5) Mechanism of Strengthening of Metallic materials.
- 6) Basic Understanding of Fracture Mechanics and its application to failure mechanisms.
- 7) Fatigue of engineering materials.
- 8) Fractography and failure analysis.

Additional "The Plastic Deformation of Metals", R.W.K. Honeycombe,

Reading Edward Arnold & American Society of Metals.

"Introduction to Dislocations", 3rd Edition, D. Hull and D.J. Bacon,

Pergamon Press.

"Deformation and Fracture of Engineering Materials", R. W. Hertzberg, 3rd Edition

Notes Homework	Some class notes will be emailed to each student Periodic homework will be assigned. Homework will be posted on Blackboard and you will have to complete your homework, scan it and upload it on Blackboard in pdf format.			
Examinations	3 tests Exam 1 Exam 2 Final	late March Mid April TBD	2015 2015	
Grading	Homework Exam I Exam II Final	20% 20% 20% 30% 100%		
Grading:	 > 85 75-84 65-74 55-64 < 55	A Grade B Grade C Grade D Grade F		

Note: Students enrolled in MAE 4336 will get an additional credit of 10 points.

<u>SYLLABUS</u>

MATERIAL COVERED	SECTION
Stress-Strain Relationships for Elastic Behavior Mechanical Metallurgy - George E. Dieter	Chapter 2
Theory of Plasticity Mechanical Metallurgy - George E. Dieter	Chapter 3
Dislocations Mechanical Metallurgy - George E. Dieter The Plastic Deformation of Metals - Honeycombe Introduction to Dislocations-Hull & Bacon	Chapter 5 Chapter 3 Chapters 1,2,3, 5, 6 & 7.
Deformation of Single Crystals Mechanical Metallurgy - George E. Dieter The Plastic Deformation of Metals - Honeycombe	Chapter 4 Chapter 4 & 5
Solid Solution Strengthening Mechanical Metallurgy - George E. Dieter The Plastic Deformation of Metals - Honeycombe	Chapter 6 Chapter 6
Precipitation Hardening Mechanical Metallurgy - George E. Dieter The Plastic Deformation of Metals - Honeycombe	Chapter 6 Chapter 7
Miscellaneous Strengthening Mechanical Metallurgy - George E. Dieter The Plastic Deformation of Metals - Honeycombe	Chapter 6 Chapter 9
Fracture Mechanics Mechanical Metallurgy - George E. Dieter Deformation and Fracture of Engineering Material Hertzberg.	Chapter 11 s- Chapter 8
Fracture Mechanical Metallurgy - George E. Dieter Deformation and Fracture of Engineering Material Hertzberg. The Plastic Deformation of Metals - Honeycombe	Chapter 7 &14 s- Chapter 7 & 10 Chapter 15
Fatigue Mechanical Metallurgy - George E. Dieter	Chapter 12

Deformation and Fracture of Engineering Materials-Hertzberg. Chapter 12 & 13

Creep

Mechanical Metallurgy - George E. DieterChapter 13The Plastic Deformation of Metals - HoneycombeChapter 13Deformation and Fracture of Engineering Materials-Hertzberg.Hertzberg.Chapter 5

American With Disabilities Act

The University of Texas at Arlington is on record as being committed to both the spirit and letter of federal equal opportunity legislation; reference Public Law 93112 - The Rehabilitation Act of 1973 as amended. With the passage of new federal legislation entitled Americans with Disabilities Act (ADA), pursuant to section 504 of the Rehabilitation Act, there is renewed focus on providing this population with the same opportunities enjoyed by all citizens.

As a faculty member, I am required by law to provide "*reasonable accommodation*" to students with disabilities, so as not to discriminate on the basis of that disability. Student responsibility primarily rests with informing faculty at the beginning of the semester and in providing authorized documentation through designated administrative channels.

Academic Dishonesty

It is the philosophy of the University of Texas at Arlington that academic dishonesty is a completely unacceptable mode of conduct and will not be tolerated in any form. All persons involved in academic dishonesty will be disciplined in accordance with University regulations and procedures. Discipline may include suspension or expulsion from the University.

"Scholastic dishonesty includes but is not limited to cheating, plagiarism, collusion, the submission for credit of any work or materials that are attributable in whole or part to another person, taking an examination for another person, any act designed to give unfair advantage to a student or the attempt to commit such acts." (Regents' Rules and Regulations, Part One, Chapter VI, Section 3, Subsection 3.2, Subdivision 3.22)