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STANDARD FORM FOR A LPP
Maximize

a11x1 + a12x2 +….+ a1nxn  ≤ , = , ≥ b1

------------------------------------------------------------------

am1x1+ am2x2 +….+ amnxn ≤ , = , ≥ bm

x1,…, xn ≥ 0
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    s u b je c t  to
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x x

z = c1x1 + c2x2 + …+ cnxn
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DIET EXAMPLE

Consider an impecunious student who 
decides to eat meals consisting of 
only milk, tuna fish, bread, and 
spinach. Formulate a linear program 
to minimize cost while meeting the 
required daily allowance (RDA) of 
various nutrients.

DATA
Gallons of 

milk  

x1

Pounds of 
Tuna  

x2

Loaves of 
Bread  

x3

Pounds of 
Spinach          

x4

RDA

Vit. A 6400 237 0 34000 5000 IU

Vit. C 40 0 0 71 75 mg

Vit. D 540 0 0 0 400 IU

Iron 28 7 13 8 12 mg

Cost $3.00 $2.70 $1.80 $2.16

IU = International Unit; mg= milligram
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Minimize z = 3.00x1 + 2.70x2 +1.80x3 + 2.16x4

s.t.

6400x1 +237x2 +  0x3  + 34000x4 > 5000             vit. A

40x1   +    0x2 +  0x3  +       71x4 > 75                 vit. C

540x1 +    0x2 +  0x3  +         0x4 > 400               vit. D

28x1 +    7x2  + 13x3+         8x4 > 12                 iron

x1, x2, x3, x4    > 0

EXAMPLE
Greenthumb.com, a fertilizer company, wants 
to make two types of fertilizers: high-nitrogen 
and all-purpose fertilizers. There are two types 
of components needed to make these 
fertilizers. Component 1 consists of 60% 
nitrogen and 10% phosphorous and costs 20 
cents per pound. Component 2 consists of 10% 
nitrogen and 40% phosphorous and costs 30 
cents per pound. The company wants to 
produce 5000  25-pound bags of high-nitrogen 
fertilizer and 7000 25-pound bags of all-
purpose fertilizer.
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Let x1 denote the amount of component 1 required to 
make high-nitrogen fertilizer and x2 denote the amount 
of component 2 required to make high-nitrogen fertilizer.
Similarly let y1 and y2 denote the amounts of 
component 1 and component 2, respectively, required to 
make all-purpose fertilizer. High-nitrogen fertilizer must 
contain 40 – 50 %  nitrogen by weight and all-purpose
fertilizer must contain at most 20 % phosphorous by weight.
Greenthumb.com wants to minimize the total cost of 
producing these fertilizers. 

Minimize z = 0.2( x1 +y1) + 0.3(x2 + y2)

s.t.

x1 + x2 > 125,000

y1 + y2 > 175,000

-0.20x1 + 0.30x2 < 0

0.10x1 – 0.40x2 < 0

-0.10y1 + 0.20y2 < 0

x1, x2, y1, y2 > 0.
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ChemLabs uses raw materials I and II to produce 
two domestic cleaning solutions A and B. The daily 
availabilities of raw materials I and II are 160 and 
145 units, respectively. One unit of solution A 
consumes 0.5 unit of raw material I and 0.6 unit of 
raw material II, and one unit of solution B uses 0.4 
unit of raw material I and 0.3 unit of raw material II. 
The profits per unit of solutions A and B are $8 and 
$10, respectively. The daily demands for solutions A 
and B are exactly 175 and 200 units, respectively, all 
of which may not be able to be fulfilled. Find the 
optimal daily production amounts of A and B. 

EXAMPLE

Let x be the units of solution A to be made, and let 
y be the units of solution B to be made. 

Maximize z = 8x + 10y

s.t.

0.5x + 0.4y ≤ 160 I

0.6x + 0.3y ≤ 145   II

x ≤ 175   A

y ≤ 200    B

x,y ≥ 0

SOLUTION
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An industrial recycling center uses two scrap 
aluminum metals, A and B, to produce a special 
alloy. Scrap A contains 6% aluminum, 3% silicon, 
and 4% carbon. Scrap B has 3% aluminum, 6% 
silicon and 3% carbon. The costs per ton for 
scraps A and B are $100 and $80, respectively. 
The specifications of the special alloy are as 
follows:

HOMEWORK 1

1. The aluminum content must be at least 3% and 
at most 6%

2. The silicon content must lie between 3% and 
5%

3. The carbon content must be between 3% and 
7%

Formulate a linear program that can be used to 
determine the amounts of scrap A and B that 
should be used to minimize the cost of creating 
1000 tons of the special alloy.
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GRAPHICAL SOLUTION OF 
LINEAR PROGRAMMING

Maximize z = 3x1+5x2

subject to

3x1 + 2x2 < 18

x1                < 4

x2 < 6

x1, x2 > 0

GRAPHICAL SOLUTION

2 4 6

2

4

6

x1

x2

(2,6)

x2 = 6

x1 = 4

3x1 + 2x2 = 18

3x1 + 5x2 =36(0,0)
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DEFINITIONS

FEASIBLE SOLUTION: an (x1,…xn) satisfying  
all the constraints

OPTIMAL SOLUTION: a best feasible 
solution

EXTREME POINT: a corner of the convex set 
of feasible solutions

PROPERTIES

PROPERTY 1:
The set of feasible solutions to a linear 
programming problem is a convex set.

PROPERTY 2:
If there exists an optimal solution, then at 
least one extreme point is optimal.

PROPERTY 3:
There are only a finite number of extreme 
points.
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Before giving properties 4 and 5, rewrite the

problem by adding slack variables. A slack

variable is added to make an inequality into

an equation. By adding slack variables, the

problem becomes

Maximize z = 3x1+5x2

subject to

3x1 + 2x2 + x3                      = 18

x1                         + x4           = 4

x2                       + x5 = 6

x1, x2, x3, x4, x5 > 0.
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GRAPHICAL INTERPRETATION

x1 , x2  > 0

x1+x2 < 1

x2

x1

(0,1)

(1,0)(0,0)

x1+x2 + x3 = 1

x1, x2, x3 > 0

not an extreme 
point, not even 
feasible. feasible region 

in this 2‐dimensional surface 
embedded in 3 dimensions

x3

x2

x1

(0,0,1)

(1,0,0) (0,1,0)
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BASIC SOLUTIONS
For m equations and n unknown variables (m<n),   
solve for m variables in terms of (n-m) set to 0. 
Consider

x1+x2 + x3 = 2
2x1 ‐x2 + x3 = 1.

Pick x3, set it to zero, and solve for the others.

x1+x2 = 2
2x1 – x2 = 1

x1 = 1,  x2 = 1 are basic variables. 
x3 = 0 is a non‐basic variable. 

EXAMPLE
x1+x2 + x3 = 2 

2 x1 ‐x2 + x3 = 1  

Pick x2, set it to zero, and solve for the others.

x1+ x3 = 2

2x1+ x3 = 1        

x1 = – 1, x3 = 3 are basic variables. 

x2 = 0  is a non‐basic variable.
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BASIC  FEASIBLE 
SOLUTION

A basic solution to the constraints (omitting non‐
negativity) of LPP with slacks and surplus variables 
with all basic variables > 0.

In the previous examples, Example 1 yielded a BFS 
while Example 2 did not.

DEGENERATE BFS
A  basic feasible solution where at least one basic 
variable is 0.

Example 1:

x1+x2 + x3 = 1

2x1+x2 + x3 = 2

Pick x3 = 0 as nonbasic and x1, x2  as basic. Solve

x1+x2 = 1

2x1+x2 = 2       

to obtain x1 = 1,  x2 = 0  for the basic variables.
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Example 2:

x1+x2 + x3 = 1

x1+x2 + 3x3 = 2

Arbitrarily chose x3 as the nonbasic variable to give 
x1+x2 = 1

x1+x2 = 2.

Note the contradiction. Thus there is no basic solution 
with x3 = 0.

Property 4:

With slacks as needed to make all constraints 
equality, there is a one‐to‐one correspondence 
between the BFS of these equality constraints and 
the extreme points of the original constraints.
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Property 5:

Changing one BV in a BFS moves to an 
adjacent extreme point.

x1

x2

one 
iteration

Maximize z = 3x1 + 5x2 
s.t.

3x1 + 2x2   < 18

x1                 < 4

x2    < 6

x1, x2 > 0

EXAMPLE
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Rewrite to get 

Maximize z = 3x1+5x2

subject to

3x1 + 2x2 + x3                      = 18,

x1                         + x4               = 4,

x2                         + x5   = 6,

x1,x2,x3,x4,x5 > 0

A BFS is found using the last 3 equations 

while keeping track of  z using the first equation.

z – 3x1 – 5x2                                     = 0

3x1 + 2x2 + x3                     = 18

x1                           + x4           = 4

x2                        + x5 = 6.

Rewrite to give

Note: m=3 , n=5  => 10 possible BFS’s
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Initial BFS:
x3 = 18, x4 = 4, x5 = 6     (BV) 
x1 =   0, x2 = 0              (NBV)

and     z =   0

Note that making x2 positive increases z the 
most per unit.

Hence, make x2 a BV and keep x1=0 a NBV.

Next, rewrite the last 3 equations to give

x3 = 18 – 3x1 – 2x2
x4 =   4 – x1
x5 =   6          – x2.

Now
x3 = 18 – 2x2  > 0    =>  x2 < 9
x4 =   4
x5 =   6 – x2         > 0     =>  x2 < 6

So  x2  enters and  x5  leaves.

The new BFS is adjacent to the earlier one.
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z – 3x1 – 5x2                                  =   0

3x1 + 2x2 + x3                     = 18

x1                           + x4           =  4

x2                        + x5 =  6

Multiply 4th equation by 5 and add to z row and

multiply 4th equation by ‐2 and add to 2nd equation.

z – 3x1                                  + 5 x5 = 30           

3x1              + x3      – 2x5 =  6

x1                           + x4           =  4

x2                        + x5 =  6

it has been optimized. Thus z = 36, x1 = 2, x2 = 6.

z                + x3      +3x5= 36

x1      +1/3x3              ‐2/3x5= 2

– 1/3x3   +x4  +2/3x5= 2 

x2                               + x5= 6.

It follows that 

All of the negative variables have been
removed from the objective function meaning that
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TABLEAU APPROACH

BV z x1 x2 x3 x4 x5 RHS

z

x3

x4

x5

1

0

0

0

-3

3

1

0

-5

2

0

1

0

1

0

0

0

0

1

0

0

0

0

1

0

18

4

6

TABLEAU ONE

GAUSS – JORDAN
ELIMINATION

The pivot element is the intersection of the leaving and 
entering variables in the tableau.

a                b

c d

Let a = pivot element.
Then the new element dnew = (ad – bc) / a .
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SIMPLEX ALGORITHM

1. Must have all RHS (not z ) > 0.
2. Entering variable is most negative element in top 

row.
3. Leaving variable is found by finding the smallest 

ratio of the RHS to positive elements of pivot 
column. (If no positive elements, the problem is 
unbounded.)

4. Form new tableau using Gauss-Jordan elimination.
5. If elements in top row > 0, stop. Otherwise, go to 2.

BV z x1 x2 x3 x4 x5 RHS

z

x3

x4

x2

1

0

0

0

-3

3

1

0

0

0

0

1

0

1

0

0

0

0

1

0

5

-2

0

1

30

6

4

6

TABLEAU TWO
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BV z x1 x2 x3 x4 x5 RHS

z

x1

x4

x2

1

0

0

0

0

1

0

0

0

0

0

1

1

1/3

-1/3

0

0

0

1

0

3

-2/3

2/3

1

36

2

2

6

FINAL TABLEAU

SOLUTION

z =36

x1=2

x2=6
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EXAMPLE

Maximize z = 2x1+3x2

subject to

x1 + x2 < 3

x1 - x2  < 1

x1,x2 > 0   

Adding slack variables, we get

z – 2x1 – 3x2              = 0

x1    +x2 +x3          = 3
x1    ‐x2          +x4 = 1
x1, x2, x3, x4 > 0.
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TABLEAU

BV z x1 x2 x3 x4 RHS

z

x3

x4

z

x2

x4

1

0

0

1

0

0

-2

1

1

1

1

2

-3

1

-1

0

1

0

0

1

0

3

1

1

0

0

1

0

0

1

0

3

1

9

3

4

SOLUTION

z  =9
x1=0

x2=3
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HOMEWORK 2

Maximize z = 2x1+5x2

subject to

x1 + x2  < 12

3x1+ x2  < 18

x1,x2 > 0

Solve using the simplex method by the  tableau 
approach.

HOMEWORK 3-8

Six linear programming problems solved by Lingo are due 
February 20 at the beginning of class. Some form of computer 
printout of the solution is required. In all cases, simply apply 
Tora to the mathematical problem and ignore the directions. In 
the tenth edition of Taha, these problems are: 

page 122 - #3-32 

page 126 - # 3-50 

page 126 - # 3-52  

page 129 - #3-59  

page 129 - #3-62

page 363 - #9-60. 



24

COMPLICATIONS
1. Minimization

Thus Min  f(x) = Max -f(x), so just maximize -z

f(x)

‐ f(x)

Alternately, note that in maximization problem 

the most negative value is chosen from the top 

row of the tableau. For a minimization problem 

the most positive value is selected from the top 

row of the table. All other steps are the same for 

both maximization and minimization problems.
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Minimize z = – 2x1+5x2

subject to

x1 +x2 < 12

3x1+x2 < 18

x1, x2 > 0.

Add slack variables to get

Minimize z = – 2x1+5x2

subject to 

x1+x2+x3 =  12

3x1+x2       +x4 = 18

x1,x2,x3,x4 > 0.

BV z x1 x2 x3 x4 RHS

z

x3

x4

1

0

0

2

1

3

-5

1

1

0

1

0

0

0

1

0

12

18

z

x3

x1

1

0

0

0

0

1

-17/3

2/3

1/3

0

1

0

-2/3

-1/3

1/3

-12

6

6
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Since there is no other positive value in the top row of 
the tableau, the objective function has been 
minimized with

z = -12
x1 = 6
x2 = 0 .

HOMEWORK 9

Minimize z = 2x1 – 4x2

s.t.

x1+x2 < 10

2x1+x2 < 16

x1,x2 > 0
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2. Unrestricted variables

Maximize z = – 2x1 + x2

subject to
x1 + x2 < 10

2x1 + x2 < 16
x1 > 0
x2  UR

Let x2 = x2
+ – x2 

– , where x2
+, x2 

– > 0. These 
new  variables cannot be basic variables at 
the same time. At least one of them will be 
zero, or both of them will be zero.

Rewrite the problem as
Maximize z =  –2x1 + (x2

+- x2 
– )

subject to
x1 + (x2

+ – x2 
– ) < 10

2x1 + (x2
+ – x2 

– ) < 16
x1, x2

+, x2 
– > 0 .

Add slack variables to give
Maximize z =  –2x1 + x2

+- x2 
–

subject to
x1 + x2

+ – x2 
– +x3 = 10

2x1+ x2
+ – x2 

– +x4 = 16
x1, x2

+ , x2 
– , x3 , x4 > 0 .

Solve as usual and get x2 = (x2
+ – x2 

– ) afterwards. 
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HOMEWORK 10

Maximize z =  – 2x1 – 4x2

s.t.

x1 + 3x2 < 10

2x1 + x2 < 16

x1 > 0, x2  UR

3. Tie for Entering Variable

The top row of the maximization problem is 
shown below. It is seen that coefficients of x1

and x2 are equal. Break the tie arbitrarily. It 
doesn’t make difference which variable x1 or 
x2 is chosen to enter.

BV z x1 x2 x3 x4 RHS

z 1 -1 -1 0 0 0
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4. Tie for leaving variable

In the maximization tableau below the values are 
same for both x3 and x4.  Break the tie arbitrarily. 

BV z x1 x2 x3 x4 RHS

z

x4

x3

1

0

0

0

1

0

-2

1

1

0

0

1

0

1

0

12

12

12

When there is a tie for leaving variable, the next 

tableau has a BFS with a 0. Usually this has no 

effect. Cycling is possible, but there are ways to 

overcome it. We will discuss this later.

5.  Alternate optimal solutions

The final iteration of the maximization 
problem is shown below in the tableau. If a 
non-basic variable has zero coefficient in the 
top row, it means there are alternate optimal 
solutions. Here x4 could be entered without 
changing z.

BV z x1 x2 x3 x4 RHS

z

x1

x2

1

0

0

0

1

0

0

0

1

4

3

2

0

2

3

36

12

12
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6. No feasible Solution - related to 7 below.

7. Initial basic feasible solution

To begin a problem, make every constraint 
into an equality (hopefully with a 
nonnegative rhs) by adding slack or 
subtracting surplus variables. If it has <
sign, add a slack variable. If it has a > sign, 
subtract a surplus variable. For every such 
constraint without an obvious basic variable, 
add an artificial variable.

Maximize z = x1+ 2x2 + 3x3

subject to,

x1 + x2 + x3 = 12

2x1 + x2 – x3  > 10

3x1 – x2  + 2x3 < 18

x1 , x2 , x3 > 0 .

Adding the slack variables  to the constraints

x1   + x2  + x3 = 12

2x1 +  x2 – x3 – x4 = 10

3x1 – x2  + 2x3          +x5 = 18

x1 , x2 , x3 , x4 , x5 > 0 .
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Constraint 1 doesn’t have an obvious variable 
that can be selected as basic variable. The 
basic variable in constraint 2 is negative. 
Therefore for these 2 constraints we add 
artificial variables.

x1   + x2  + x3 + x6 = 12

2x1 +  x2 – x3 – x4 + x7  = 10

3x1 – x2  + 2x3        + x5 = 18

x1 , x2 , x3 , x4 , x5, x6 , x7  > 0,

where  x6 , x7 are artificial variables.

BIG-M METHOD
In the Big M method modify the objective 
function penalizing artificial variable with M, 
where positive M is a very big number.

Maximize z = x1+ 2x2 + 3x3 – Mx6 – Mx7

subject to 

x1 + x2  + x3 + x6 = 12

2x1 +  x2 – x3 – x4 + x7 = 10

3x1 - x2  + 2x3          + x5                     = 18

x1 , x2 , x3 , x4 , x5, x6, x7 > 0
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BIG-M METHOD

• Solve problem with artificial variables

• Two cases for solution:

– All artificial variables become non-basic 
(zero) and z has no “M penality” if and only 
if the original problem is feasible.

– At least one artificial variable is basic 
(positive) and z has an “M penality” in 
every optimal solution if and only if the 
original problem is infeasible.

EXAMPLE OF CASE 1
Maximize    z = 2x1 + x2

s.t.
x1 + x2 ≤10
x1 + 2x2 ≥ 16
x1, x2 ≥ 0.

Maximize    z = 2x1 + x2 – Mx5

s.t.
x1 + x2 + x3 = 10
x1 + 2x2 – x4 + x5 = 16
x1, x2, x3, x4, x5 ≥ 0, 

where x5 is an artificial variable.
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Making the coefficient of the basic variable 0 in 
the first row.

BV z x1 x2 x3 x4 x5 RHS

z 1 -2 -1 0 0 M 0

x3 0 1 1 1 0 0 10

x5 0 1 2 0 -1 1 16

BV z x1 x2 x3 x4 x5 RHS

z 1 -2-M -1-2M 0 M 0 -16M

x3 0 1 1 1 0 0 10

x5 0 1 0 -1 1 162

BV z x1 x2 X3 x4 x5 RHS

z 1 - 3/2 0 0 -1/2 1/2+ M 8

x3 0 0 1 1/2 - 1/2 2

x2 0 1/2 1 0 - 1/2 1/2 8

1/2

B.V. z x1 x2 x3 x4 x5 RHS

z 1 0 0 3 1 M-1 14

x1 0 1 0 2 1 -1 4

x2 0 0 1 -1 -1 1 6

All the coefficients of the x’s in the top row are non‐negative, 
so we have the optimal solution z =14, x1 = 4 and x2 = 6.

x5 left basis so original problem is feasible. Yay!
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EXAMPLE OF CASE 2
Maximize    z = 2x1 + x2

s.t.
x1 + 2x2 ≤10
x1 + 2x2 ≥ 16
x1, x2 ≥ 0.

Maximize    z = 2x1 + x2 – Mx5

s.t.
x1 + 2x2 + x3 = 10
x1 + 2x2 – x4 + x5 = 16
x1, x2, x3, x4, x5 ≥ 0, 

where x5 is an artificial variable.

Making the coefficient of the basic variable 0 in 
the first row.

BV z x1 x2 x3 x4 x5 RHS

z 1 -2 -1 0 0 M 0

x3 0 1 2 1 0 0 10

x5 0 1 2 0 -1 1 16

BV z x1 x2 x3 x4 x5 RHS

z 1 -2-M -1-2M 0 M 0 -16M

x3 0 1 1 0 0 10

x5 0 1 2 0 -1 1 16

2
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BV z x1 x2 x3 x4 x5 RHS

z 1 - 3/2 0 1/2+ M M 0 5-6M

x2 0 1 1/2 0 0 5
x5 0 0 0 -1 - 1 1 6

1/2

B.V. z x1 X2 x3 x4 x5 RHS

z 1 0 3 M+2 M 0 20-6M

x1 0 1 2 1 0 0 10

x5 0 0 0 -1 -1 1 6

Since all the coefficients of the x’s in the top row are non‐
negative, the solution is z =20‐6M, x1 = 10 and x5 = 6. But 
since x5 is artificial and positive z has a ‐6M penalty, the 
original problem is infeasible. 

HOMEWORK 11

Maximize    z = x1 + 3x2

s.t.
x1 + x2 ≤ 8
4x1 + x2 ≥ 16
x1, x2 ≥ 0.
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8. Unbounded problem

Consider

Max z=x1

s.t.

x1 ≥ 0.

This problem is considered unbounded. Any LP 
has one of the following:

• No feasible solution (LP is considered 
infeasible)

• An unbounded objective (LP is considered 
unbounded)

• An optimal solution

EXAMPLE
Maximize    z = 2x1

s.t.
-x1 ≤10

x1 ≥ 0.

BV z x1 x2 RHS

z 1 -2 0 0

x2 0 -1 1 10

Since all the coefficients in the x1 column are negative, there 
is no leaving variable. Hence, x1 and z can be increased 
indefinitely, and the problem is unbounded.   
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DUALITY

Primal  Problem P:

Maximize 

s.t.

a11x1 + a12x2 +…+ a1nxn   < b1

---------------------------------

am1x1 + am2x2 +…+ amnxn < bm

x1,…,xn > 0

z =
1

n

j
cjxj

Dual  Problem D:

Minimize

s.t.

a11y1 + a21y2 +…+ am1ym  > c1

---------------------------------

a1ny1 + a2ny2 +…+ amnym > cn

y1,…,ym > 0

w =     biyi


m

i 1
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DUALITY RELATIONSHIPS
1. The dual of the dual is the primal.

2. For any feasible (x1,…,xn) for P and any 
feasible (y1,…,ym) for D ,then z < w.

3. For any optimal (x1*,…,xn*) for P and any 
optimal (y1*,…,ym*) for D, then z* = w*.
Also, if z* = w*, then (x1*,…,xn*) and 
(y1*,…,ym*) are optimal.

4. Primal unbounded => dual infeasible
Primal infeasible    => dual unbounded or

dual infeasible
(See table)

Primal Dual States

Dual

Primal

Infeasible Unbounded Optimal 

Infeasible Rare X

Unbounded X

Optimal ☺
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ANY DUAL

Max Min

< Constraint

> Constraint

= Constraint

> 0 Variable

< 0 Variable

UR Variable

> 0 Variable

< 0 Variable

UR Variable

> Constraint

< Constraint

= Constraint

EXAMPLE

P. Minimize

s.t.

– x1 + 3x2  < -2

x1 – x2 =   6

x1 UR, x2 < 0

z = 2x1 + x2
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D. Maximize

s.t.

– y1   +  y2 = 2

3y1  – y2 > 1

y1 < 0, y2 UR

w = – 2y1 + 6y2

DUAL SIMPLEX
The dual simplex involves solving the dual on 
the primal tableau with appropriate – signs.

1. Must have optimality criterion (nonnegative 
coefficients for max problem) satisfied in top row.

2. Leaving variable is most negative RHS excluding 
the z row.

3. Entering variable is found by finding the smallest 
ratio of the absolute value of elements in top row 
(excluding RHS) to negative elements of pivot 
row. (If no negative elements, problem is 
infeasible.)

4. Form a new tableau as before.
5. If all RHS (not z ) > 0, stop. Otherwise, go to 2.
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EXAMPLE
Minimize

s.t.
x1   +    x2  > 4
5x1  +  3x2 > 15 

x1 , x2 > 0.

Rewriting as equality constraints,

Minimize 
s.t.

-x1   - x2  +  x3 =  - 4
-5x1   - 3x2 +  x4 =  -15 

x1 , x2 , x3 , x4 > 0.

z = 2x1 + x2

z = 2x1 + x2

DUAL SIMPLEX

BV z x1 x2 x3 x4 RHS

z

x3

x4

1

0

0

-2

-1

-5

-1

-1

-3

0

1

0

0

0

1

0

-4

-15

z

x3

x2

1

0

0

-1/3

2/3

5/3

0

0

1

0

1

0

-1/3

-1/3

-1/3

5

1

5
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HOMEWORK 12

Maximize z = – 3x1 – 2x2

s.t

x1 +   x2 > 4

3x1 + 5x2 > 15

x1, x2 > 0.

APPLICATION

The dual simplex may be used to solve problems

in which one or more constraints are added after 
an optimal solution is obtained to the original 
problem.

Maximize z = 3x1 + 2x2
s.t

x1 + x2 < 4
x1, x2 > 0.
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With a  slack variable, the problem becomes

Maximize z = 3x1 + 2x2

s.t

x1 + x2 + x3 = 4,

x1, x2, x3  > 0.

BV z x1 x2 x3 RHS

z 1 -3 -2 0 0

x3 0 1 1 1 4

BV z x1 x2 x3 RHS

z 1 0 1 3 12

x1 0 1 1 1 4
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Now add the constraint 

x1 < 2

to the original problem. With a slack variable 
x4 > 0, this constraint becomes 

x1 + x4 = 2.

Add this equation to the tableau and proceed

using the dual simplex.

BV z x1 x2 x3 x4 RHS

z 1 0 1 3 0 12

x1 0 1 1 1 0 4

x4 0 1 0 0 1 2
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BV z x1 x2 x3 x4 RHS

z 1 0 1 3 0 12

x1 0 1 1 1 0 4

x4 0 0 -1 -1 1 -2

Dual
Simplex

BV z x1 x2 x3 x4 RHS

z 1 0 0 2 1 10

x1 0 1 0 0 1 2

x2 0 0 1 1 -1 2

This tableau yields the new optimal solution.
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HOMEWORK 13

Minimize z = -2x1 + 5x2

s.t
3x1 + 4x2 < 12

x1,x2 > 0.

After solving this problem, add the constraint

x1 + 2x2 > 6.

INTEGER PROGRAMMING
Maximize z = 3x1 + x2

s.t.
x1 +   x2 < 4

3x1 + 5x2  < 15
x1, x2  > 0

x1, x2 integers.

If x1, x2 are integers, then the problem is a pure 
integer programming problem. If only x1 or x2 is an 
integer, then the problem is a mixed integer 
programming problem.
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1 2 3 4 5

1

2

3

4

5

x1 + x2 < 4 3x1 + 5x2 < 15

Feasible region for a LPP without
any integer constraints (relaxed LPP)

x1

x2

The feasible region  is given by the dots below.

Integer programming problems are usually 
solved by branch and bound algorithms. 
There are other methods.
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Max z = 3x1 + x2 

s.t.

4x1 + 3x2  < 10  

x1, x2  > 0  

x1, x2  integer.

The constraints become

4x1 + 3x2 + x3 =10

x1, x2 , x3 > 0

x1, x2 integer.

EXAMPLE

Step 1: Solve relaxed LPP (without integer restrictions)

BV       z        x1               x2              x3                                         RHS
z          1       ‐3        ‐1         0                               0
x3  0        4         3           1                             10

z          1        0                                              
x1 0         1                                               

4
5

2
15

2
5

4
3

4
1

4
3
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Step 2: Use branch and bound

z = 
x1 = 
x2 = 0

z  = 
x1 =  2
x2 = 

Infeasible 
solution

x1 < 2 x1 > 3

3
20

2
15

2
5

3
2

Use relaxed LP after adding x4 for x1 > 3 branch.

x1 – x4 = 3
- x1 + x4 = -3

Add x4 to the previous table
BV      z       x1           x2            x3             x4                 RHS
z         1        0                   ¾          0             
x1 0         1      ¾        ¼         0              
x4 0        -1       0         0        1        -3 

Adding row constraints x1 and x4

x4 0         0     ¾      ¼          1      -1/2

Dual is unbounded      =>      Primal is infeasible        

4
5

2
5

2
15
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After adding x4 for x1 < 2, we obtain

x1 + x4 = 2
Add this equality with bv x4 to the optimal table.
BV       z         x1             x2            x3               x4                   RHS
z          1         0                      ¾          0              
x1 0         1          ¾         ¼           0                
x4 0         1           0         0           1                2
Subtract the x1 row from the x4 row to get a new x4 row.
x4 0        0                                      1            
Now x2 enters and x4 leaves.
z         1         0          0                    
x1 0         1         0             0           1               2
x2           0          0         1                    

4
5

3
5

2
5

2
15

4
3 4

1 2
1

3
1

3
1

3
20

3
2

3
4

Fathoming Rules:

1. Infeasible

2. All xi integer that supposed to be

3. A value of z no better than some z for 
feasible xi to  original  integer restrictions.
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Using branch and bound,

z   = 
x1 = 2
x2 = 

z = 6
x1 = 2
x2 = 0

z   = 
x1 = 
x2 = 1

z = 5
x1 = 1
x2 = 2

Infeasible

x2 < 0 x2 > 1

x1 < 1 x1 > 2

4
25

3
20

3
2

4
7

HOMEWORK 14

Max z = 3x1 + 2x2 

s.t.
6x1 + 5x2 < 21 

x1, x2 > 0

x1, x2 integer
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MIXED IPP EXAMPLE

Max z = 4 x1 – 2x2 + 7x3 – x4
s.t.

x1 +5 x3   < 10
x1  +   x2 – x3 < 1
6x1 – 5x2                < 0
– x1 + 2 x3 – 2 x4 < 3

xj > 0, for j = 1,2,3,4

xj integer for j = 1,2,3

z =  14 ¼
x1 =       , x2 = 
x3 =       , x4 = 0

x1 < 1x1 > 2

Solution tree after first iteration:

z = 14
x1 = 1   , x2 = 
x3 =      , x4 = 0

Infeasible

4
5

4
7

2
3

5
1

5
9

5
6
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z = 14 
x1 = 1  , x2 = 
x3 =     , x4 =  0

x2 < 1x2 > 2

z = 14 
x1 =        , x2 = 1
x3 =        , x4 = 0

z = 12 
x1 =        , x2 = 2
x3 =        , x4 = 0

6
5

5
6

5
1

5
9

6
5

6
1

6
11

6
1

6
11

z  = 14
x1 =      , x2 = 1
x3 =      ; x4 = 0

x1 = 0x1 = 1

z = 13 ½
x1 = 0 , x2 = 0
x3 = 2 , x4 =   

Optimal solution.

Infeasible

6
1

6
5

2
1

6
11
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Solve the following integer programming
problem.

Maximize  z = x1 + x2
s.t.

x 1 + 5x2  11
3x1 + x2  8

x1, x2  0
x1 integer.

HOMEWORK 15

z   = 
x1 =       
x2 = 

x1 < 2x1 > 3

z   = 
x1 =  2 
x2 = 

Infeasible

14
54

14
29

14
25

5
19

5
9
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z   = 

x1 =     2 

x2 = 

5
19

5
9

z   =  3 

x1 =  1 

x2 =  2

z   =  3

x1 =  2 

x2 =  1

x2 < 1 x2 > 2

BINARY IPP

Max z = 3x1 + x2 

s.t.

4x1 + 3x2 < 10
x1, x2 > 0
x1, x2 { 0,1}

To solve, simply add  
x1 < 1
x2 < 1

x1, x2 integer,
eliminate the binary constraint, and solve as a pure IPP.


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TRANSPORTATION 
PROBLEM

1         2 m       source
c12

1 2 n       destination

The constant cij is the cost per unit from 
source i to destination j, while xij is the 
amount (integer number of units) shipped 
from source i to destination j.

The aim of the model is to minimize the 
shipping cost, i.e.,

Min z = cij xij

s.t.

= si , i = 1,…,m

The transportation problem can be solved by 
the simplex algorithm.




m

i 1




n

j 1

xij

= dj , j = 1,…,n




n

j 1




m

i 1

xij non-negative integer.

xij
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ASSIGNMENT MODEL

1         2 n people
c12

1 2 n jobs

Here, cij=cost for assigning person i to  do 
the job j.

Min z = cij xij

s.t.

xij = 1, i  =1,…,n

xij = 1, j = 1,…,n

xij {0,1}.

The assignment model is a binary integer 
programming problem that can be solved as 
a transportation model.




n

i 1



n

j 1




n

i 1




n

j 1


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1. Apply the simplex method to the following
linear programming problem.

Maximize z = 6x1 – 3x2
s.t.

x1 + 2x2  8
x1 – x2  4

x1, x2 > 0.

Answer: z = 28, x1 = 16/3, x2 = 4/3.

PRACTICE TEST 1

2. Apply the simplex method to the following linear
programming problem.

Minimize z = – 5x1 + 6x2
s.t.

– 2x1 + x2  8
5x1 + 2x2 = 20

x1, x2  0.

Answer:  z = 460/9, x1 =  4/9, x2 = 80/9.



59

The Crazy Nut Company wishes to market two special nut mixes during the
holiday season. Mix 1 contains 2/3 pound of peanuts and 1/3 pound of

cashews; mix 2 contains 3/5 pound of peanuts, 1/4 pound of cashews, and
3/20 pound of almonds. Mix 1 sells for $1.49 per pound; mix 2 sells for $1.69
per pound. The data pertinent to the raw ingredients appear in the table.
Assuming that Crazy Nut can sell all cans of either mix that it produces,
formulate an LP model to determine how much of mixes 1 and 2 the company
should produce.

Ingredient Amount Available 
(lb)

Cost per 
lb

Peanuts 30,000 $.35

Cashews 12,000 $.50

Almonds 10,000 $.70

3.

x2 = number # mix 2

x1 = number # mix 1

Answer:

Max z = 1.09x1 + 1.25x2

s.t.
2/3x1 + 3/5x2   30000

1/3x1 + 1/4x2   12000

3/20x2   10000

x1, x2  0.
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Consider the linear programming problem
max z = 4x1 + x2

s.t.
2x1 + 3x2  6

x1, x2  0.
The optimal tableau is given below, where x3 is the slack variable added to

the constraint.

Add the constraint x2  1 to the original problem and solve it
beginning with the above tableau.

BV z x1 x2 x3 RH
S

Z

x1

1

0

0

1

5

3/2

2

1/2

12

3

4.

Answer:  z = 7,  x1 = 3/2, x2 = 1.

Solve the following integer programming problem.
Maximize z = x1 + x2

s.t.

x1 + 5x2  11

3x1 + x2  8

x1, x2  0

x1, x2 integer.

Solution on next page:

5.



61

z   = 
x1 =       
x2 = 

x1 < 2x1 > 3

z   = 
x1 =  2 
x2 = 

Infeasible

14
54

14
29

14
25

5
19

5
9

z   = 

x1 =     2 

x2 = 

5
19

5
9

z   =  3 

x1 =  1 

x2 =  2

z   =  3

x1 =  2 

x2 =  1

x2 < 1 x2 > 2
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REVIEW FOR QUIZ 1
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PROGRAMMING
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Applications of NLP

• Data networks – routing

• Production planning

• Resource allocation

• Modeling human or organizational 
behavior

Example 1
Given a fixed area of cardboard A	unitଶ, 
formulate a nonlinear program to find the 
dimension of a six-sided rectangular box 
with maximum volume. 

ݔܽ݉ ݖݕݔ
.ݏ .ݐ ݕݔ2 ൅ ݖݔ2 ൅ ݖݕ2 ൌ ܣ

,ݔ ,ݕ 0≤	ݖ
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Example 2

Consider the problem of determining locations for two new 
high schools in a set of ܲ subdivisions ௝ܰ. Let ݓଵ௝ be the 
number of students going to school A and ݓଶ௝ be the 
number of students going to school B from subdivision ௝ܰ . 
Assume that the student capacity of school A is ܿଵ and the 
capacity of school B is ܿଶ and that the total number of 
students in each subdivision is ݎ௝ . We would like to 
minimize the total distance traveled by all the students 
given that they may attend either school A or B. Construct 
a nonlinear program to determine the locations ሺܽ, ܾሻ and 
ሺܿ, ݀ሻ of high schools A and B, respectively assuming the 
location of each subdivision ௜ܰ is modeled as a single point 
denoted ሺݔ௜, .௜ሻݕ

Answer

ଵ௝ݓ෍݁ݖ݅݉݅݊݅݉ ܽ െ ௝ݔ
ଶ
൅ ܾ െ ௝ݕ

ଶ
ଵ
ଶ

௉

௝ୀଵ

൅ ଶ௝ݓ ܿ െ ௝ݔ
ଶ
൅ ݀ െ ௝ݕ

ଶ
ଵ
ଶ

.ݏ .ݐ
∑ ௜௝ݓ ൑ ܿ௜௝ , ݅ ൌ 1, 2; 	݆ ൌ 1,… , ܲ

ଵ௝ݓ ൅ ଶ௝ݓ ൌ ,௝ݎ ݆ ൌ 1,… , ܲ
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Notation

• f :R1     R1 means f(x) = y

• f :Rn     R1 means f(x1,…xn) = y

• In general we want to 

where A is the feasible region.

n
n

n

RAxx

ts

xxf

),...(

..

),...(max

1

1

Classical Optimization in R1

• Let f :R1    R1.  We first wish to 
(P1) maximize f (x)

s.t.

x  R1

where f is differentiable. Here, there are no 
constraints and the feasible region is R1.
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Definitions

1. The point x* is a local maximum if            
f (x)  f (x*) for all x in some 
neighborhood of x*.

2. The point x* is a global maximum if          
f (x)  f (x*) for all x.

3. The term maximum means global 
maximum and is a point in the domain.

SOME TERMS IN LOGIC 

• Let p and  q be propositions - statements 
that can be judged true or false.

• Necessary condition
Consider the proposition: “If p, then q.”
Then q is said to be a necessary 

condition for p.



67

• Sufficient condition
Consider the proposition: “If p, then q.”
Then p is said to be a sufficient condition for q.

• Contrapositive
Consider the following two propostions.

(a) “If p, then q.”
(b) “If not q, then not p.”

Then (b) is called the contrapositive of (a).

Definitions

x

f (x)

x1 x2 x3
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Results

• Necessary condition from calculus 
– If x* solves P1, then f '(x*)=0.

• Sufficient condition 1
– Let x* be an stationary point (with f '(x*)=0). 

Then if f ''(x*) < 0, x* is a local maximum.

• Sufficient condition 2
– If the order of the first non-vanishing 

derivative is even and the value at 
x* is < 0, then x* is a local max.

Critical Points

Any extremum of f (x) over [a,b] must be one 
of the following critical points:

1. A stationary point in [a,b] where f '(x)=0

2. a,b

3. Points in [a,b] for which f '(x) is not defined.



69

Critical Point Problem

• Optimize f (x)

s.t.

x[a,b]

a b

Example

Optimize f (x) = (x-2)3 + |x|

s.t.

x  [-1,3]

To find the stationary points we write












0,)2(

0,)2(
)(

3

3

xxx

xxx
xf
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2

2

2

2

It follows that

3( 2) 1, 0
             ( )

3( 2) 1, 0.

Thus 

            3 -12 +13=0, 0

            3 -12 +11=0, 0.

             

x x
f x

x x

x x x

x x x

     
  





So

             

             

In both cases,  the solutions are not negative and 

hence there are no stationary points for .

The critical points are thus

             1. 

             2. 1,3

             3. 

x x

x x

x

x

x

  




    




 


2
3

3
0

2
3

3
1433 2 577 0

0

0

,

. , . , .

.
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x f(x)

-1

0

3

-26

-8

4

min

max

To obtain the optima, we evaluate the objective

function at the critical points.

HOMEWORK 16

Minimize f (x) = |x+3| + x3

s.t.
x[-2,6]

.
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Unconstrained Problems in Rn

• Let f : Rn  R1 

• Let x  Rn 

•

• Q(x) is called a quadratic form, where the 
matrix A = [aij] is symmetric.


 


n

i

n

j
jiij

T xxaAxxxQ
1 1

)(

Q(x) is called:

1. Positive definite if Q(x)>0,  x0

2. Positive semidefinite  if Q(x)0,  x and 
x0 such that Q(x)=0

3. Negative definite if Q(x)<0,  x0

4. Negative semidefinite if Q(x)0,  x and
x0 such that Q(x)=0

5. Indefinite otherwise
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Positive/Negative Definite

• Q(x) = xTAx is positive definite if the 
values of the leading principal minor 
determinants of A are all positive. A is 
called  positive definite in this case.

• Q(x) = xTAx is negative definite if the 
value of the kth leading principal minor 
determinant has the sign [-1]k, k=1,2,…,n.  
A is called negative definite in this case.

Hessian Matrices

• In particular, we are interested in 
determining whether the Hessian matrix 
H(x) of a function f at point x = (x1,…xn) is 
positive definite, etc.

• The Hessian is defined as the n x n matrix

2 ( )
( ) .

i j

f x
H x

x x

 
  

   
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Example

• Show that the Hessian matrix of the 
function f(x) below is negative definite for 
all x.

2 2
1 2 1 2 1 2 1 2f( , ) 3 4 2 3 7x x x x x x x x     

• H =  -4 -4 for all x

-4 -6

• Then the principal minor determinants are

-4 and 8

• Thus the Hessian of f(x) is negative definite for 
all x.
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• Necessary condition 
– A necessary condition for X0 to be an extreme 

point of f(X) is that f(X0) = 0

• Sufficient condition 
– A sufficient condition for a stationary point X0

to be an extremum is for the Hessian matrix H
evaluated at X0 to be

• Positive definite when X0 is a local minimum point
• Negative definite when X0 is a local maximum 

point.

Necessary and Sufficient 
Optimality Conditions

Example

• Consider the function

• The necessary condition f(X0) = 0 gives
X0 = (1/2, 2/3, 4/3).

2 2 2
1 2 3 1 3 2 3 1 2 3( , , ) 2 .f x x x x x x x x x x     
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Example

• To establish sufficiency compute

H|X0 =  -2 0 0

0 -2 1

0 1 -2

• The principle minor determinants have the values
– 2,4, and – 6.

• Thus H|X0 is a negative definite and X0 = (1/2, 2/3, 
4/3) represents a local maximum point.

Convex and Concave Functions

• A function of  f : Rn  R1 is convex on a convex 
set S if for any two points x1,x2  S and any 
[0,1]

• A function of  f : Rn  R1 is concave on a 
convex set S if for any two points x1,x2  S and 
any [0,1]

1 2 1 2( (1 ) ) ( ) (1 ) ( )f x x f x f x       

1 2 1 2( (1 ) ) ( ) (1 ) ( )f x x f x f x       
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Convex and Concave 
Functions

f(x)

x

f(x)

x

Convex and Concave Functions

• A function f is convex (concave) on a 
convex set S if and only if its Hessian 
matrix H(x) is positive (negative) 
semidefinite for all xS.

• A convex function achieves its global 
minimum at a stationary point.

• A concave function achieves its global 
maximum at a stationary point.
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• For example we know that the function f   
below is concave on R2 because we have 
already shown that its Hessian matrix is 
negative semidefinite for all (x1,x2).

2 2
1 2 1 2 1 2 1 2( , ) 3 4 2 3 7f x x x x xx x x     

HOMEWORK 17

Check if the following function is convex or 
concave: 

݂ ,ଵݔ ଶݔ ൌ ଵݔ ൅ ଶݔଵݔ3 ൅ ଶݔ
ଶ െ 7.
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Constrained Problems in Rn

1

1

1

max ( ,..., )

. .

( ,..., ) 0, 1,...,

( ,..., ) 0, 1,...,

n

i n

k n

f x x

s t

g x x i m

h x x i p

 
 

    

(P)

Checking for Short Cuts 
• Check to see if you can find a solution to P by 

ignoring some or all of the constraints.  If this 
solution also satisfies the neglected 
constraints, then it is optimal to P.

• Check to see if you can reduce the number of 
variables in a problem by solving some of the 
equality constraints for variables and 
substituting into the objective function and 
remaining constraints.
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EXAMPLE 1

2 2
1 2

3 .25
1 2

1 2

* *
1 2

              minimize  ( 1) ( 3)

                s.t.  

                        4

3
          | sin ( )| .

2

By neglecting both constraints,the answer 

by inspection is 1, 3.

x x

x x

x x

x x



  

 



 

-1

*

1
3                 maximize  

              s.t.

                        | | 1

              Sin ( ) 1.5 .             

By neglecting the second constraint, the

answer by inspection is 1.

x

x

x

x







EXAMPLE 2

* *
1 ,... nx x
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1 2

1 2

2 2
1 2

2 1

2
1

            (I)  maximize  (1 )

             s.t.  

                     1

 1.

From the first constraint, 1 .

Substitution gives the problem 

           (II)  maximize 

          s.

x x

x x

x x

x x

x



 

 
 

2 2
1 1

t.  

             (1 ) 1.x x  

EXAMPLE 3

The constraint to (II) reduces to

               2  

or

       (

By taking cases this gives

                   

The answer to (II) is thus  by 

inspection and to (I) is 

x x

x x

x

x

x x

1
2

1

1 1

1

1

1 2

2 0

1 0

0 1

1

1 0

 

 

 



 

) .

.

, .

*

* *
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HOMEWORK 18

2 2
1 2

1 2

1 2

1 2

1
2 1

2

     minimize  
     s.t.

   1
                   

 cos( )

      
    , 0.             

x x

x x

x x

x x





 

   
 



TO FIND A GLOBAL MAXIMUM FOR PROBLEM P IN PRACTICE:

• Find all interior points                 for which  the partials are  0 
(stationary points).

• If     is not differentiable everywhere, include also points where the

partials        do not exist together with stationary points to give

critical points.

• Find all boundary points                satisfying 

 for all feasible directions 

• Compare values at all these points and choose the largest value. 
The points giving this largest value are the global  maxima if  a 
maximum exists.

The following conditions provide a method for doing this.

1( ,..., )nx x

f

d  

1( ,..., )nx x

1( ,..., ) 0nf x x  .d

i

f

x



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FRITZ JOHN NECESSARY 
CONDITIONS FOR PROBLEM P

Suppose that , and  

are all differentiable at the maximum

(x , ,x ) for P. Then there exist real

numbers (Lagrange multipliers) 

, , , ,  and ,  such that

(x , ,x ) and these constants satisfy

the following conditions:

1
*

n
*

1 m 1 p

1
*

n
*

f g g h hm p1 1, , , , ,

,

 



 



    

Fritz John 
Necessary Conditions

* *
1

1 1
( ,... )

* *
1

1 1

0, 1,..

( ,..., ) 0, 1,...,

, 0, 1,...,

, ,..., , ,...,

n

pm
i k

i k
i kj j j x x

i i n

i

m p

g hf
j n

x x x

g x x i m

i m

  


 
    

 

 
   

  

 

 

 

are not all 0

* *
1

* *
1

( ,... ) 0, 1,...,

( ,... ) 0, 1,...,

i n

k n

g x x i m

h x x i p

 

 

1.

2.
3.

4.

5.
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Karush-Kuhn-Tucker 
Necessary Conditions

• Very frequently the Fritz John conditions 
can be simplified somewhat because the 
constraints are “nice” at (x1*,…xn*).  In that 
case =1 and condition 4 is automatically 
satisfied.  

• For our purposes, we take =1 only when 
all constraints are linear (or Nota Bene 
applies) although the optimum usually 
occurs when =1. Otherwise the 
necessary conditions do not involve the 
objective function.

Procedure

• Solve the Fritz John conditions to get the 
candidates for the maximum P.

• If the solution exists, it must be among the 
candidates.

• Evaluate all candidates.

• The best one is maximum if a maximum exists.
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Nota Bene
• If you’re lucky, then 

– The objective function f and all of the 
inequality constraints g are concave. 

– The equality constraints h are linear. 

• In this case, the KKT conditions are both 
necessary and sufficient.

• α= 1.

• No need to check all candidate solutions.

Weierstrass (Extreme Value) 
Theorem

• A continuous function on a closed 
bounded region achieves both its 
maximum and minimum on the region.

• It follows that if all the functions in P are 
continuous and the feasible region is 
bounded, then P has a solution.
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HOMEWORK 19-23

Five nonlinear programming problems solved by 
Lingo, Matlab, or some other standard software are 
due on March 20 at the beginning of class. These 
problems must be formulated by the student, so each 
student will have different problems. A trial version of 
Lingo can be obtained at www.lindo.com. A copy of 
your problems and some form of computer printout of 
the solution are required. 

EXAMPLE 1

32

32

..

min

21

21

2
2

2
1






xx

xx

ts

xx
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Example 1 in Standard Form:

2 2
1 2 1 2

1 1 2 1 2

2 1 2 1 2

max ( , )

         . .

( , ) 3 2 0

( , ) 3 2 0

f x x x x

s t

g x x x x

g x x x x

  

   
   

Example 1 - Questions

• Are all constraints linear?
– Yes, so =1

• Is the feasible region bounded?
– No

– We must worry about existence.
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Example 1-Fritz John Conditions

1 1 2

2 1 2

1 1 2

2 1 2

1 2

1 2

1 2

2 2 0
(1)

2 2 0

( 2 3) 0
(2)

(2 3) 0

(3) , 0

(4)

3 2 0
(5)

3 2 0

x

x

x x

x x

okay

x x

x x

 
 




 

   
   

  
   



  
   

Example 1 – Cases from condition (3)

• Case (a) 1=0, 2=0

• Case (b):1=0, 2>0
0)1( 21  xx

okay

xxxx

xx

xx

xx

)5(

5/3,5/632)2(

2
202

022

)1(

2121

21

2
222

2121


















 


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• Case (c) 1>0, 2=0

1
1 1 1

2 1 2 1

2 1

1 2 1 2

2 2 0 2
(1) 2 2 0

2

(2) 2 3 3/ 5, 6 / 5

(5)

x x

x x

x x

x x x x

okay



 

     
      
 

     

Example 1 – Cases from condition (3)

• Case (d) 1>0, 2>0

okay

xx

xx

xx

)5(

1

32

32

)2(

21

21

21















Example 1 – Cases from condition (3)
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Example 1 – Evaluation of candidates

(x1,x2) f (x1,x2)
(0, 0) 0

(6/5, 3/5) -45/25

(3/5, 6/5) -45/25

(1, 1) -2

If there is a max, it occurs at the point (0,0)

max

But wait ….

• We didn’t ask a most important question -
is there a short cut or easier way ?

32

32

..

min

21

21

2
2

2
1






xx

xx

ts

xx
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Questions we should ask:

 Is there an easier way?
 Yes
 Then do it and save yourself lots of time.

 Are all constraints linear?
 Yes, so =1’

 Is the feasible region bounded?
 No
 We must worry about existence.

EXAMPLE 2

1 2

2 2
1 2

min  3

    . .

2 5 230

x x

s t

x x



 
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Put in standard form.

1 2 1 2

2 2
1 1 2 1 2

max , ) 3

. .

( , ) 2 5 230 0

f x x x x

s t

h x x x x

  

   

 (

   

Questions we should ask:

Is there an easier way?
 No

Are all constraints linear?
 No

Is the feasible region bounded?
 Yes
 The best candidate is the solution.
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Fritz John Conditions

1 1

2 1

1

2 2
1 2

4 0
(1)

3 10 0

(2)

(3) 0

(4) ,  not both zero

(5)2 5 230 0

x

x

NA

x x

 
 


 

  
  



  

Case I: 

 





  
  

0

4 0 10

0

1 2

1 2

            (5)  and  not both 0.

            (1)

                      (4).
1 1

1

x x

x x .
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 

1 1
1

1 2

6
52 1

22 6
51 1

1 2

1

4 1
            (1) 0.  

10 3   

                      .

            (5) 2 5 x 230.

                      ( , ) (5,6), ( 5, 6).  

            Obviously both satisfy

x

x

x x

x

x x











   

 

  

   

Case II :

 (5).    

 1 2,x x (f x x1 2, )

( , )5 6 23

( , ) 5 6 23max

Therefore the minimum to the original

problem is ( 5 6, ).
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EXAMPLE 3

              maximize  

                    s.t.

          

               

We rewrite in the standard form of  P.

x x

x x

x x

1 2

1
2

2
2

1 2

1

0



 
, .

1 2 1 2

1 1 2 1

2 1 2 2

2 2
1 1 2 1 2

              maximize  ( , )
        s.t.

             ( , )             0

             ( , )            0

                ( , ) 1 0.

f x x x x

g x x x

g x x x

h x x x x

 

 

 

   
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Questions we should ask:

Is there an easier way?
 No

Are all constraints linear?
 No

Is the feasible region bounded?
 Yes
 The best candidate is the solution.

Write the Fritz John Conditions.

1 1 1

2 2 1

1 1

2 2

1 2

1 2 1

1

2

2 2
1 2

2 0
(1)

2 0

0
(2)

0

(3) , , 0

(4) , , ,  not all zero

0

(5) 0

1 0

x

x

x

x

x

x

x x

  
  




  
   

  
   


 



 
 
   
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Case I:

subcase (a):

subcase (b):



 



 

 



 

 
   

 

 
   

0

0 0

0

0 5

0 0

0

0 0

1 2

1

1 2

1 2

2

2 2

     

            (4)

            (1)

     

          (2)

            (1)

,

.

( ).

,

.

.

x x

x

 

          (2)

            (1)

  

          (2)

subcase (c):

subcase (d):

 

 

 

1 2

1

1 1

1 2

1 2

0 0

0

0 0

0 0

0 5

 

 
   

 

   

,

.

.

,

( ).

x

x x
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 

1 2

1 1

1 2

1

1 2

2 2
1 1

1

1 1
2 2

1
2

1

    0, 0 

1 2 0
            (1)  

1 2 0.

            0.

             Hence .

            (5) 1.

          ,  is a candidate

                  

x

x

x x

x x





 








 

 
   

 

  

  



Case II :

subcase (a) :

 1 1
2 2  but not , .

1 2

2

1

1 2

1

    0, 0 

          (2) 0.

            (5) 1.

           (1,0) but not (-1,0) is a candidate.

    0, 0 

        a candidate is (0,1) as before.

    

x

x

 

 



 

 
  



 





subcase (b) :

subcase (c) :

subcase (d) : 2

1 2

0, 0 

          (2) 0 (5) as before.x x

 

   
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 1 2,x x
1 2( , )f x x

(1,0) 1

 0,1 1

2 1 1
2 2,max

EXAMPLE 4

1 2

2 2
1 2

1 2

maximize  

     . .

4

2 2

x x

s t

x x

x x



 
 
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Put in standard form.

1 2 1 2

2 2
1 1 2 1 2

1 1 2 1 2

max ( , )

. .

( , ) 4 0

( , ) 2 2 0

f x x x x

s t

g x x x x

h x x x x

 

    
  

 

   

  

Questions we should ask:

 Is there an easier way?
 No

 Are all constraints linear?
 No

 Is the feasible region bounded?
 Yes
 The best candidate is the solution.
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Fritz John Conditions



2 1 1 1

1 1 2 1

2 2
1 1 2

1

1 1

2 2
1 2

1 2

2 2 0
(1)

2 0

(2) ( 4) 0

(3) , 0

(4) , ,  not all zero

4 0
(5)

2 2 0

x x

x x

x x

x x

x x

  
  



 
  

  
   

   



   


  

 
   

1

1

1

2 2
1 2

1 2 2 1

22
1 1

8
1 2

0

     0

            (1) 0 (4).

     0

            (2) 4

            (5)  2 2 2 2

                  2 2 4.

                  So , 0, 2 ,

x x

x x x x

x x

x x












  


  
     

   



Case I :

subcase (a) :

subcase (b) :

 6
5 5, .

                  Both these satisfy (5) and are candidates.  


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 

1

2 1

1 1

2 1

1 2

1
21 2

1
2

1

     0

2 0
            (1)   

0   

                      2 .

            (5) 2 2

                      , 1.

                        ,1  satisfies (5

x

x

x x

x x

x x












 
   

 
  

  

Case II :

subcase (a) :

).    

1

2 2
1 2

1 2

1 2 1 2

      0

            (2) 4

            (5)  2 2

             These have already been solved. 

                        ( , )              ( , )

                         (0, 2)

x x

x x

x x f x x

 

  
  

subcase (b) :

 
 

8 6
5 5

1
2

     0

                        ,

                         ,1     

48
25

1
2

 

max
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HOMEWORK 24 - 27
1 2

2 2
1 2

1 2

2 2
1 2

1 2

1 2

(24)   maximize  2 5
              s.t.
                   2 5 13   
(25)   minimize  2
              s.t.
                    4
                    3 + 4
(26)   maximize  

     

x x

x x
x x

x x
x x

x x



 


 



1 2

1 2

1 2

1 2

         s.t.

                    4

       , 0

(27)   maximize  

              s.t.

                    4

x x

x x

x x

x x

 



 

REVIEW FOR QUIZ 2
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node

arc / branch

c

distance / time

NETWORK ANALYSIS

SHORTEST PATH

Note that the arcs / branches have no direction, 
ie., are undirected.

O

A

B

C

D

E

T

7

2 2

5

4

4

1
3

4

1

5

7
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Seek a path from origin node O to terminal node T that 
minimizes the total distance, which is positive.

• Find all 1st closest nodes to O; then label them with the 
total distance to O and the preceding node in the path.

• Find the second closest nodes adjacent to the first closest 
nodes or origin.

• Proceeding, we eventually find T as the nth closest node 
for some n.

• Working backwards gives the shortest paths.

This is essentially Dijkstra’s method. If arcs are directed, 
we can only do this in one direction.

HOMEWORK 28

O

A

B

C

D

F

T

4

7 6

6

5

4

5 3

4 3

5

8 E
6
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EXAMPLE 
John drives to UTA every day. Having just 
completed a course in network analysis, John is 
able to determine the shortest route to work. 
Unfortunately, the selected route is heavily 
patrolled by police, and with all the fines paid for 
speeding, the shortest route may not be the best 
choice. John has thus decided to choose a route 
that maximizes the probability of not being 
stopped by police. The next figure shows the 
possible route between home and work, and the 
associated probabilities of not being stopped on 
each segment. 

Shortest path: 1-3-5-7 = 0.0675
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FLOW IN NETWORKS

A B
4 1

represents capacity of A to B

represents capacity of B to A

MAXIMAL FLOW

O

A

B

C

D

E

T

3

5
1

7
4

4

0 0

4

1

9

6

0

0
0

1

0
2

5

0
0

1

0

0

Flow
Flow

O = Source T = Sink
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PROCEDURE

1.   Find a path with positive capacity from source to sink.

Put that much flow in it.

2.   Reduce the forward capacity by the flow and increase    the 
backward capacity by the same amount to allow the 
possibility of undoing what you did.

3.  Repeat until this cannot be done. At that point you can find 
a cut with 0 remaining capacity from source side of cut to 
sink side.

4. For an example, see the link http://optlab-
server.sce.carleton.ca/POAnimations2007/MaxFlow.html.

• Definition: A cut is a minimum set of branches 
whose breaking will separate the source from 
sink. Its cut value is the sum of the capacities of 
its branches from the source side of the cut to 
the sink side.

• Max. Flow - Min. Cut Theorem:  The maximum 
flow through the network equals the minimum 
cut value, where the cut value of a cut is the 
sum of capacities from source to sink direction.



109

Homework 29

O

A

B

C

D

E

T

6

8
5

9

2

4 0

5

5

9

10

2

4
2

0

0 3

3
0

5

0

0

DYNAMIC  
PROGRAMMING
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SURFING EXAMPLE

MiamiNOLA EP

AtSF KC

WaSe Ch

States

N

M

S

Stages1 2 3

5 6

4 5

76 5

5 7 5

5

6

6

6

6

6

7

The goal of the above problem is to reach 
west coast from Miami in a minimum 
possible time.

Stage – where a decision is made,
numbered here as the number of 

decisions left to make.

State - where you are in a stage.
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SOLUTION
stages: cities

states: north, middle, and south

decision variables: destination city at 
next stage    

returns: time to reach next destination at 
next stage               

3 2 1
s3 s2 s1

d3 d2 d1

r3 r2 r1

Stage State  time to best dstn. rem. time

1            N                   4 SF                    4

M                  5 LA                    5

S                    5 LA                   5

_____________________________________

2            N                    6+4                10

7+5                    

M                    5+4                  9

6+5

7+5                 
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Stage State time to dstn. rem. time

S             6+5               11

7+5                

_________________________________

3             S             6+10

5+9               14

5+11

ANSWER

minimum time 5+5+4 = 14 hours

Miami At Ch SF
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KEY POINTS OF DYNAMIC 
PROGRAMMING

1)  Work backwards.
2)  Break a problem into subproblems.
3)  Bellman’s principle of optimality: If a 

decision is to be made, make the best
decision from here forward. Forget the
past. Optimal subpolicies so obtained 
yield an optimal overall policy. 

PROPERTIES OF SOLUTION 
PROCEDURE

1) A problem is divided into stages. A stage 
is where a decision is made.

2) DP transforms higher-dimensional 
problems into multiple lower-dimensional 
ones.

3) Each stage has a number of states 
associated with it. A state is “where 
you’re at” in the stage.



114

4) One proceeds from a state in one 
stage to another state in the next stage. 
The optimal decision is found for each 
possible state of a stage, where optimal 
refers to future stages.
The “curse of dimensionality” refers to 
the   fact that one could be required to 
solve large numbers of problem with 
large numbers of states.

5) Given the current stage, the optimal 
policy for the remaining stages is 
independent of the policy adopted in 
previous stages.

PROBLEM FORMULATION
AND NOTATION

• dn= decision variable at stage n

• sn = state variable at stage n

• rn= rn(sn, dn) = return at stage n in state sn for

decision dn

• tn=  stage transformation sn-1= tn(sn, dn) at

stage n
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• fn (sn) = optimal n stage return objective
function that is only a function of
state

fn (sn) = optimum [rn(sn, dn)    fn-1 (sn-1)] 

s.t
sn-1 = tn(sn, dn),  n=2,3,……,N.                  

f1 (s1) = optimum [r1(s1, d1)],  n=1. 

dn

d1



N N-1 n n-1 1
sN sN-1 sN-2 sn sn-1 sn-2 s1

dN dN-1 dn dn-1 d1

rN rN-1
rn rn-1 r1

fn-1(sn-1)
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STEPS IN SOLVING A PROBLEM

1) Define the mathematical optimization 
problem to be solved. This step may involve 
modeling a real-world situation.

2) Define the stages, the states, and the 
entities

dn,  sn,  rn,  tn,  fn.

3) Give DP formulation to (1) by specifying  the 
recursive equations of dynamic programming 

fn (sn) = optimum [rn(sn, dn)    fn -1 (sn -1)] 

s.t
sn-1 = tn(sn, dn),  n = 2,3,…,N.                  

f1 (s1) = optimum [r1(s1, d1)],  n = 1. 

4)    Perform the computations.

dn

d1


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Example 1: Allocation Problem

David Goodfellow has 3 children whose ages are 
2, 3, 4.  One day after work he decides to treat 
his children by buying them some candy.  
Unfortunately he has only 3¢, so he buys them 4 
jellybeans.  He desires, however, to utilize these 
4 jellybeans to the fullest.  He knows from 
experience that none of his children will eat more 
than 2 jellybeans.  Moreover, being an observant 
father and knowing his children’s characteristics, 
he estimates the units of pleasure that 0, 1, 2 
jellybeans will give each child.  The following 
table gives these estimates :

Units of Pleasure
jellybeans Roosevelt David Jr.

(Davy)  

Meridith

0 0 0 1

1 1 2 3

2 3 4 0
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Suppose David, Sr. wishes to maximize the 
total pleasure that the jellybeans will give his 
children.  Using dynamic programming, 
allocate the jellybeans optimally among the 
3 children.  

Solution

stages: children

states: # of jellybeans left

decision variables: how many jellybeans to  
give the child at stage n   

returns: pleasure units (ahs!) at stage n          
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Stage 1

s1 d1 r1 f1(s1) = max r1

4            0            0

1            1

2 *          3                  3 

3            0            0 

1            1

2 *          3                  3 

2            0            0             

1            1

2 *          3                  3

1            0            0          

1 *          1                  1

0            0 *          0                  0

Stage 2

s2 d2 r2 s1 = s2 - d2 r2 + f1(s1) f2(s2)

4           0           0            4          0 + 3 = 3           

1           2            3          2 + 3 = 5

2 *          4           2          4 + 3 = 7          7

3           0           0            3          0 + 3 = 3

1 *          2           2          2 + 3 = 5          5

2 *         4            1          4 + 1 = 5          5

2 0           0             2          0 + 3 = 3 

1            2            1          2 + 1 = 3 

2 *          4            0          4 + 0 = 4          4
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Stage 3

s3 d3 r3 s2 = s3 -d3 r3 + f2(s2) f3(s3)
4         0 *        1              4           1 + 7 = 8        8 

1 *        3              3           3 + 5 = 8        8
2          0              2           0 + 4 = 4

Answer:

M D R  
0         2         2 
1         1         2 
1         2         1

Example 2: Allocation Problem

A small plane is being loaded with cargo 
consisting of 3 types of items.  These 
items must be loaded in integer quantities 
, and the plane can carry only 1000 
pounds of cargo.  The profit realized from 
one unit of each type of item, as well as 
its weight per unit, is given below.    
Maximize the value of the cargo for the 
plane subject to the weight restriction.
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Data

item i Weight per 
unit

Profit per 
unit

A 250 $ 3000

B 300 $ 4000

C 400 $ 5000

Solution
• stages: items
• states: remaining weight available to 

allocate
• decision variables: units of item n
• return: profit for item n

d3 d2 d1

s2     s1

s3 =1000   

r3 r2 r1

3 2 1
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Stage 1 - C

s1 d1* f1(s1)

0 ≤ s1< 400            0                     0 
400 ≤ s1< 800 1                5000
800 ≤ s1 ≤1000           2              10,000

Stage 2 - B
s2 d2 r2  s1 r2+f1(s1)                f2(s2)=max [r2+f1(s1)]

1000      0                 0     1000           0 + 10,000  
1            4000      700       4000 + 5000     
2  *         8000     400        8000 + 5000              13,000
3         12,000      100     12000 + 0

750       0                 0       750             0 + 5000 
1 *         4000      450        4000 + 5000                9000
2           8000       150        8000 + 0 

500       0 *               0      500            0 + 5000                  5000
1           4000       200      4000 + 0

250       0 *               0      250            0 + 0                               0 

0       0 *               0            0           0 + 0                               0 
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Stage 3 - A

s3 d3 r3 s2 r3+f2(s2)            f3(s3)=max [r3+f2(s2)]

1000        0 *           0      1000             0 + 13,000         13,000

1            3000    750        3000 + 9000                 

2            6000    500        6000 + 5000

3            9000    250        9000 + 0

4         12,000     0         12,000 + 0

Answer :                 item optimal #

A             0

B             2

C             1

HOMEWORK 30
A student has final examinations in 3 
courses X,Y, Z, each of which is a 3 credit-
hour course.  He has 12 hours available 
for study period.  He feels that it would be 
best to break the 12 hours up into 3 blocks 
of 4 hours each and to devote each 4-hour 
block to one particular course.  His 
estimates of his grades based on various 
numbers of hours devoted to studying 
each course are as follows. Using dynamic 
programming, allocate his study time 
optimally.
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F D D B

D D B A

F D B B

X

Y

Z

0 4 8 12

Data

Number of hours

Course

Example 3: Allocation Problem

Consider a system with 3 components in
series of types A, B, and C respectively.
If one component fails, the system fails.
The reliability of the system (that is, the
probability that all types of components
work properly) can be improved by
installing redundant components in
parallel. Suppose that the unit cost and
probability of failure of each type of
component is given below.
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Type Failure Probability Cost     
A                     0.6                   $1
B                     0.4                   $2
C                     0.5                   $3

Assume that you have $10 to spend on
components. This answer includes money for
at least one of each type. Use dynamic
programming to determine the optimum
number of components of each type to buy so
as to maximize the reliability of the system.

Answer

1 2 3, , 0,1,2,3,d d d  

Maximize

• stages: components

• stage transformations

• states: = $ left to spend at stage i

• decision variables:  = # redundancies of type n

• returns: rn = prob. of success at stage n

]5.01][4.01][6.01[ 111 321   ddd

s.t.
1 2 31 2 3 4d d d  

-1  -  n n n ns s c d

321 ,, ddd

nd
is

1
,( )  1

dn
n n nn d sr q

 
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Stage 1: type A     
 
 

1s      *
1d         )6.01( 1

1
1 dr            )6.01max()( 1

11
1 dsf     

 
4          4           1- 0.65 =0.92                    0.92 
 
3          3           1- 0.64 =0.87                    0.87 
 
2          2           1- 0.63 =0.78                    0.78 
 
1          1           1- 0.62 =0.64                    0.64 
 
0          0           1- 0.61 =0.40                    0.40 

Stage 2: type B              
                 

2s         2d         
1

2
24.01  dr               221 2dss                 )( 112

sfr                   )](max[)( 11222 sfrsf   

 

4         0              0.6                             4               0.60  .92=0.55                               
           1 *           0.84                           2               0.84  0.78=0.65              0.65 
           2              0.94                           0               0.94  0.40=0.37   
    
1        0 *            0.6                             1               0.6  0.64=0.38               0.38 
 
 

Stage 3: type C 
                  

                 
3s        3d        1

3
35.01  dr                332 3dss                    )( 223 sfr                    )](max[)( 22333 sfrsf   

4        0 *        0.5                          4               0.5  0.65=0.325               0.325                 
          1           0.75                        1               0.75  0.38=0.29      
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Maximum reliability = 0.325

type redundancies total number

C 0 1

B 1 2

A 2 3

Example 4: Optimal Stopping Rule

An oral examination is designed as follows.
There are 4 questions of which everyone is
required to attempt the first question. If this first
question is answered correctly, a student
receives a numerical grade of 50 in the course.
Otherwise, he receives a 0. For the remaining 3
questions , a student has the option of keeping
his numerical grade from the previous question
or attempting the next question for a higher
grade. At each question, if the question is not
answered correctly, the student receives a
consolation grade.
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The probabilities of correctly answering the three
optional questions, the grade received for a
correct response, and the consolation grade are
given below. Formulate an optimal policy for
taking this oral examination to maximize the
expected numerical grade you receive.

Optional Question Probability Grade  Consolation Grade

( first )                 0.6                65                       40

( second )            0.5                80                      55 

( third )                 0.3              100                      70






Answer

• stages: optional questions

• decision variable: stop or go

• returns: expected grade

• states: grade in hand
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Max{80, 0.3(100)+0.7(70) = 79}= 80    Stop

Max{65, 0.5(80)+0.5(55) = 67.5}= 67.5     Go 

Max{50, 0.6(67.5)+0.4(40) = 56.5}= 56.5    Go

Stage 1: Question γ

Stage 3: Question  

Stage 2: Question 



Question Decision

α ( first ) Go

β ( second ) Go

γ ( third ) Stop
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Example 5: Traveling 
Salesman Problem

A businessman must travel to each of the 
following cities B, C, D, E, starting from A 
and ending in A.  He can go through each 
city only once except that, of course, he 
ends in A after starting there.  The “map” 
below indicates the possible routes that he 
could take, where the numbers represent 
distances.  Find the optimal route that he 
should follow to minimize the total distance 
that he travels.

A

B

D

C E

33
4

3

5

2 4

4

6
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stages: cities (first three stops)

states: visited cities in order

decision variable: next city

returns: distance to next destination

Solution

Stage 1

s1 d1 r1 f1(s1)

A, B, C                    E*           15               15

A, B, D                    E*           13               13

A, B, E                    D*           10               10

C            13               13

A, C, B                    E*           13               13

A, C, D                    E*           10               10

A, C, E                    B             13              13

D*           11              11

A, D, B                    E*           12               12

A, D, C                    E*           11               11

A, D, E                    B*           10               10

C            11               11
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Stage 2

s2 d2 s1 = s2 d2 r2 + f1(s1) f2(s2)

A, B        C          A,B,C        3+15 =18  
D          A,B,D        4+13 =17
E *       A,B,E         3+10 =13       13

A, C        B         A,C,B         3+13 =16
D *      A,C,D         2+10 =12        12
E         A,C,E         5+11 =16

A, D        B         A,D,B         4+12 =16
C *      A,D,C         2+11 =13        13
E         A,D,E         4+10 =14



Stage 3

s3 d3 s2= s3  d3 r3 + f2(s2) f3(s3)

A          B *          A,B           3 + 13 =16          16
C *         A,C           4 + 12 =16          16
D           A,D            6 + 13 =19

Answer:

A B E D C A
A C D E B A


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MULTIPLE OBJECTIVE 
DECISION MAKING

GOAL PROGRAMMING
• Involves satisficing.

• Goals are ranked by order of importance.

• In preemptive goal programming, higher 
priority goal is assumed to be infinitely more 
important than a lower priority goal.

• Goal programming achieves as many higher-
priority goals as possible, then attempts to get 
as close as possible to satisfying the 
remaining goals.
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PRODUCT-MIX EXAMPLE

Faze Linear Company is a small manufacturer of 

high-fidelity components.   It has facilities to 

produce only power amps, only preamps, or a 

combination of both. Due to limited resources, it 

is critical to produce appropriate quantities of 

power amps and/or preamps to maximize profit.

selling price 
per unit

profit

per unit

power amps $799.95 $200

preamps $1000 $500
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resources

microchips assembly time inspection time

transformation process

final products x1 x2

power amps($200) preamps($500)

40 units 240 hours 81 hours

• Because of a shortage of high quality 
microchips, at most 40 items can be 
manufactured on a daily basis.

• All other electronic components are in 
adequate supply.

• Only 240 hours of assembly worker time is 
available each day. 

• Each power amp requires 1.2 hours of 
assembly time and preamp requires 4 hours. 

• 81 hours are available for testing and 
inspection each day.

• Power amps require 0.5 hours and preamps 
require 1 hour of inspection.
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• Since power amps do not require a microchip, 
the limited availability of microchips will directly 
affect only the number of preamps produced 
each day. So we have x2 ≤ 40.

• Both components require assembly time. 

• The combined assembly time must not exceed 
240 hours. So we have 1.2x1+4x2 ≤ 240. 

• For inspection and testing time, the constraint 
is 0.5x1+x2 ≤ 81. Also, there are the 
nonnegativity conditions x1, x2 ≥ 0. (We ignore 
integer requirements here.)

LP TO MAXIMIZE PROFIT

Maximize 200x1 + 500x2

s.t.

x2 ≤ 40

1.2x1 + 4x2 ≤ 240

0.5x1 + x2 ≤ 81

x1, x2 ≥ 0
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TWO-GOAL MODEL

• Assume that the Faze Linear management would 
like to achieve two goals:

priority 1: achieve profit of $40,000/day.
priority 2: limit overtime of inspectors.

• For the higher-priority goal, introduce two 
deviational variables:

d1
- = amount by which the target profit of 

$40,000 is underachieved.
d1

+ = amount by which the target profit of  
$40,000 is overachieved.

• The profit goal as a constraint can now be 
written as 200x1+500x2+ d1

- - d1
+ = 40,000.

• Notice that the $40,000 profit goal need not be 
met exactly. If d1

- has a positive value, we will 
fall short of 40,000 and if d1

+ has a positive 
value, we will exceed 40,000. 

• By the simplex method, d1
- and d1

+ cannot both 
be positive at the same time.
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• Assuming that the 81 hours of inspection time is 
regular time (not any overtime), we formulate the 
second goal by defining the deviational variables.

d2
- = amount by which inspection time is    

underutilized (ie., short of 81 hours)

d2
+ = amount by which inspection time is 

overutilized (ie., more than 81 hours)

• Formulate the overtime goal as

0.5x1 + x2 + d2
- - d2

+ = 81.

• Incorporating these goals as constraints in the LP 
formulation, we obtain the goal programming 
formulation.

Minimize P1 d1
- + P2 d2

+

s.t.

2

1 2

40 microchips
resource constraints

1.2 4 240 assembly

x

x x

 
   

sconstraint goal 
815.0

000,40500200

2221

1121
















ddxx

ddxx

0,,,,, 221121  ddddxx
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• The P1 and P2 symbols in the objective 
function reflect the fact that d1

- and d2
+ 

represent priority 1 and 2 goals, 
respectively. 

• Priorities of higher rank are infinitely 
more important than are those of a lower 
rank, i.e. P1>>P2

• In giving values to P1 and P2, take into 
account the relative size of the units of 
the variables.

• The deviational variables are to be minimized 
as they represent the amount by which the 
goals are not satisfied.

• The result of the ordinal priority rankings is 
that the profit goal will be achieved to the 
greatest extent possible before the overtime 
goal is considered. 

• If satisfying any part of the overtime goal 
causes any reduction in the higher-ranking 
profit goal, the overtime goal will not be 
satisfied at all.
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HOMEWORK 31

Acme Appliance must determine how many 
washers and dryers should stocked. It costs Acme 
$350 to purchase a washer and $250 to purchase 
a   dryer. A washer requires 3 sq. yd of storage 
space, and a dryer requires 3.5 sq. yd. The sale of 
a washer earns Highland a profit of $200, and the 
sale of a dryer $150. Acme has set the following 
goals (listed in order of importance):

• Goal 1:   Highland should earn at  least 
$30,000 in profits from the sale of washers and 
dryers. 

• Goal 2:   Washers  and dryers should not use 
up more than 400 sq. yd. of storage space.

Formulate a preemptive goal programming 
model for Acme to determine how many 
washers and dryers to order. Use D for the 
number of dryers and W for the number of 
washers as your variables. There should be 
only goal constraints in your formulation for 
this particular problem.



141

Pareto Optimality
• Example 1. You have two objective functions given as 

elements in a two-tuple and a decision involving two 
possible actions. For each action, consider the following 
returns.

Obviously, action 2 is better because the return for both 
objectives is better than those for action 1. Action 1 is 
said to dominate action 2, so you choose action 1 as 
your decision.

Return for actions 1 and 2

Action 1 (1, 7)

Action 2 (2, 8)

Pareto Optimality
• Example 2: Again you have two objective functions and 

a decision involving two possible actions. For each 
action, consider the following returns.

This time action 1 is not obviously better than action 2 
and vice versa. Neither dominates the other in both 
returns, so both are said to be Pareto optimal. 

Return for actions 1 and 2

Action 1 (8, 2)

Action 2 (9, 1)
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Pareto Optimality  
Optimization Formulation

Pareto Optimality – Mathematical 
Definition
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HOMEWORK 32

Consider the Pareto optimization problem 

Vmax (2x2 - 3y2, 25-5y)
x,y

s.t.
0 < x < 10
0 < y < 5,

where the first objective function f1(x,y) = 2x2 - 3y2 represents 
profit in hundreds of dollars employee per day and the second 
objective function f2(x,y) = 25-5y represents happiness in the 
average number of smiles per employee per work day. Is (10,5) 
an efficient point for this problem? Is (0,0)? Show your work.

Pareto Optimality – Example 1

This point is not Pareto 
optimal  so it is not on 
the efficient frontier..

The efficient frontier of two objective functions can be seen graphically, where 
the efficient frontier is the set of the objective function values over the feasible 
region that are not dominated and hence are Pareto optimal two-tuples.
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Pareto Optimality – Example 2

Example: Profit Pollution Trade-Off Curve

Problem Statement

Chemco is considering producing three products. The per-unit contribution to 
profit, labor requirements, raw material used per unit produced, and pollution 
produced per unit of product are given below. Currently, 1300 labor hours and 
1000 units of raw material are available. Chemco’s two objectives are to 
maximize profit and minimize pollution produced.  Graph the trade-off curve for 
this problem.

Product

1 2 3

Profit ($) 10 9 8

Labor (hours) 4 3 2

Raw material (units) 3 2 2

Pollution (units) 10 6 3

Pareto Optimality – Example 2

Example: Profit Pollution Trade-Off Curve

Problem Statement

Chemco is considering producing three products. The per-unit contribution to 
profit, labor requirements, raw material used per unit produced, and pollution 
produced per unit of product are given below. Currently, 1300 labor hours and 
1000 units of raw material are available. Chemco’s two objectives are to 
maximize profit and minimize pollution produced.  Graph the trade-off curve for 
this problem.

Product

1 2 3

Profit ($) 10 9 8

Labor (hours) 4 3 2

Raw material (units) 3 2 2

Pollution (units) 10 6 3
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Pareto Optimality – Example 2

Pareto Optimality – Example 2
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Pareto Optimality – Example 2

Pareto Optimality – Example 2
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REVIEW FOR QUIZ 3


